BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 15174108)

  • 1. Polyethylene glycol-grafted polystyrene particles.
    Meng F; Engbers GH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):49-58. PubMed ID: 15174108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pegylated polystyrene particles as a model system for artificial cells.
    Meng F; Engbers GH; Gessner A; Müller RH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):97-106. PubMed ID: 15174113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-grafted polystyrene beads with comb-like poly(ethylene glycol) chains: preparation and biological application.
    Byun JW; Kim JU; Chung WJ; Lee YS
    Macromol Biosci; 2004 May; 4(5):512-9. PubMed ID: 15468243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces.
    Bergström K; Holmberg K; Safranj A; Hoffman AS; Edgell MJ; Kozlowski A; Hovanes BA; Harris JM
    J Biomed Mater Res; 1992 Jun; 26(6):779-90. PubMed ID: 1527100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers.
    Zdyrko B; Varshney SK; Luzinov I
    Langmuir; 2004 Aug; 20(16):6727-35. PubMed ID: 15274578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.
    Xu H; Yan F; Monson EE; Kopelman R
    J Biomed Mater Res A; 2003 Sep; 66(4):870-9. PubMed ID: 12926040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces.
    Pasche S; Textor M; Meagher L; Spencer ND; Griesser HJ
    Langmuir; 2005 Jul; 21(14):6508-20. PubMed ID: 15982060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of photoreactive poly(ethylene glycol) and its application to the prevention of surface-induced platelet activation.
    Tseng YC; Park K
    J Biomed Mater Res; 1992 Mar; 26(3):373-91. PubMed ID: 1613027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly.
    Mangeney C; Fertani M; Bousalem S; Zhicai M; Ammar S; Herbst F; Beaunier P; Elaissari A; Chehimi MM
    Langmuir; 2007 Oct; 23(22):10940-9. PubMed ID: 17900197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic interfacial properties of poly(ethylene glycol)-modified ferritin at the solid/liquid interface.
    Kumashiro Y; Ikezoe Y; Tamada K; Hara M
    J Phys Chem B; 2008 Jul; 112(28):8291-7. PubMed ID: 18570392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M
    J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF-plasma-modified polystyrene surfaces for studying complement activation.
    Gölander CG; Lassen B; Nilsson-Ekdahl K; Nilsson UR
    J Biomater Sci Polym Ed; 1992; 4(1):25-30. PubMed ID: 1463697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dewetting of polystyrene thin films on poly(ethylene glycol)-modified surfaces as a simple approach for patterning proteins.
    Cai Y; Newby BM
    Langmuir; 2008 May; 24(10):5202-8. PubMed ID: 18407678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complement inhibition reduces material-induced leukocyte activation with PEG modified polystyrene beads (Tentagel) but not polystyrene beads.
    Gorbet MB; Sefton MV
    J Biomed Mater Res A; 2005 Sep; 74(4):511-22. PubMed ID: 16035062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays.
    Schlapak R; Pammer P; Armitage D; Zhu R; Hinterdorfer P; Vaupel M; Frühwirth T; Howorka S
    Langmuir; 2006 Jan; 22(1):277-85. PubMed ID: 16378432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational studies of covalently grafted poly(ethylene glycol) on modified solid matrices using X-ray photoelectron spectroscopy.
    Damodaran VB; Fee CJ; Ruckh T; Popat KC
    Langmuir; 2010 May; 26(10):7299-306. PubMed ID: 20146493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.