BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15174175)

  • 1. Biosynthesis of carbapenem antibiotics: new carbapenam substrates for carbapenem synthase (CarC).
    Sleeman MC; Smith P; Kellam B; Chhabra SR; Bycroft BW; Schofield CJ
    Chembiochem; 2004 Jun; 5(6):879-82. PubMed ID: 15174175
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbapenem biosynthesis: confirmation of stereochemical assignments and the role of CarC in the ring stereoinversion process from L-proline.
    Stapon A; Li R; Townsend CA
    J Am Chem Soc; 2003 Jul; 125(28):8486-93. PubMed ID: 12848554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of (3S,5R)-carbapenam-3-carboxylic acid and its role in carbapenem biosynthesis and the stereoinversion problem.
    Stapon A; Li R; Townsend CA
    J Am Chem Soc; 2003 Dec; 125(51):15746-7. PubMed ID: 14677956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation and biosynthesis of carbapenem antibiotics in bacteria.
    Coulthurst SJ; Barnard AM; Salmond GP
    Nat Rev Microbiol; 2005 Apr; 3(4):295-306. PubMed ID: 15759042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of carbapenem synthase (CarC).
    Clifton IJ; Doan LX; Sleeman MC; Topf M; Suzuki H; Wilmouth RC; Schofield CJ
    J Biol Chem; 2003 Jun; 278(23):20843-50. PubMed ID: 12611886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics.
    Bodner MJ; Phelan RM; Freeman MF; Li R; Townsend CA
    J Am Chem Soc; 2010 Jan; 132(1):12-3. PubMed ID: 20017478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylations in complex carbapenem biosynthesis are catalyzed by a single cobalamin-dependent radical S-adenosylmethionine enzyme.
    Sinner EK; Lichstrahl MS; Li R; Marous DR; Townsend CA
    Chem Commun (Camb); 2019 Dec; 55(99):14934-14937. PubMed ID: 31774078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition and alternate substrate studies on the mechanism of carbapenam synthetase from Erwinia carotovora.
    Gerratana B; Stapon A; Townsend CA
    Biochemistry; 2003 Jul; 42(25):7836-47. PubMed ID: 12820893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unusual bifunctional catalysis of epimerization and desaturation by carbapenem synthase.
    Topf M; Sandala GM; Smith DM; Schofield CJ; Easton CJ; Radom L
    J Am Chem Soc; 2004 Aug; 126(32):9932-3. PubMed ID: 15303862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of deuterium labelled L- and D-glutamate semialdehydes and their evaluation as substrates for carboxymethylproline synthase (CarB)--implications for carbapenem biosynthesis.
    Sorensen JL; Sleeman MC; Schofield CJ
    Chem Commun (Camb); 2005 Mar; (9):1155-7. PubMed ID: 15726176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the C5 stereoinversion reaction in the biosynthesis of carbapenem antibiotics.
    Chang WC; Guo Y; Wang C; Butch SE; Rosenzweig AC; Boal AK; Krebs C; Bollinger JM
    Science; 2014 Mar; 343(6175):1140-4. PubMed ID: 24604200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crotonase catalysis enables flexible production of functionalized prolines and carbapenams.
    Hamed RB; Henry L; Gomez-Castellanos JR; Mecinović J; Ducho C; Sorensen JL; Claridge TD; Schofield CJ
    J Am Chem Soc; 2012 Jan; 134(1):471-9. PubMed ID: 22091817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbapenem-based prodrugs. Design, synthesis, and biological evaluation of carbapenems.
    Hakimelahi GH; Moosavi-Movahedi AA; Saboury AA; Osetrov V; Khodarahmi GA; Shia KS
    Eur J Med Chem; 2005 Apr; 40(4):339-49. PubMed ID: 15804533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp.
    Bycroft BW; Maslen C; Box SJ; Brown A; Tyler JW
    J Antibiot (Tokyo); 1988 Sep; 41(9):1231-42. PubMed ID: 3182403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CP5484, a novel quaternary carbapenem with potent anti-MRSA activity and reduced toxicity.
    Maruyama T; Yamamoto Y; Kano Y; Kurazono M; Matsuhisa E; Takata H; Takata T; Atsumi K; Iwamatsu K; Shitara E
    Bioorg Med Chem; 2007 Oct; 15(19):6379-87. PubMed ID: 17681767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of novel di- and tricationic carbapenems with potent anti-MRSA activity.
    Maruyama T; Yamamoto Y; Kano Y; Kurazono M; Shitara E; Iwamatsu K; Atsumi K
    Bioorg Med Chem Lett; 2009 Jan; 19(2):447-50. PubMed ID: 19056265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production.
    Fineran PC; Slater H; Everson L; Hughes K; Salmond GP
    Mol Microbiol; 2005 Jun; 56(6):1495-517. PubMed ID: 15916601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SME-3, a novel member of the Serratia marcescens SME family of carbapenem-hydrolyzing beta-lactamases.
    Queenan AM; Shang W; Schreckenberger P; Lolans K; Bush K; Quinn J
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3485-7. PubMed ID: 17005839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and SAR study of novel 7-(pyridinium-3-yl)-carbonyl imidazo[5,1-b]thiazol-2-yl carbapenems.
    Maruyama T; Kano Y; Yamamoto Y; Kurazono M; Iwamatsu K; Atsumi K; Shitara E
    Bioorg Med Chem; 2007 Jan; 15(1):392-402. PubMed ID: 17055731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical proposal for the synthesis of carbapenems from 4-(2-propynyl)azetidinones promoted by [W(CO)5] as an alternative to the Ag+-assisted process.
    Campomanes P; Menéndez MI; Sordo TL
    Chemistry; 2006 Oct; 12(30):7929-34. PubMed ID: 16871499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.