These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15174270)

  • 1. [A geometrical model for the perceived line of orientation based on subjective evaluations and human VEP data].
    Izmaĭlov ChA; Korshunova SG; Sokolov EN; Chudina IuA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(2):237-49. PubMed ID: 15174270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Visual evoked potentials in rabbit's visual cortex reflect variations in orientation and intensity of lines].
    Polianskiĭ VB; Alymkulov DE; Sokolov EN; Radzievskaia MG; Ruderman GL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(6):688-99. PubMed ID: 19178071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plasticity of gravitational reference frame and the subjective vertical: peripheral visual information affects the oblique effect.
    Luyat M; Mobarek S; Leconte C; Gentaz E
    Neurosci Lett; 2005 Sep; 385(3):215-9. PubMed ID: 15964678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The connection of visual evoked potentials with the subjective differences between emotional expressions of the "schematic face"].
    Izmaĭlov ChA; Korshunova SG; Sokolov EN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(5):805-18. PubMed ID: 11084997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of a discontinuity in the sense of verticality at large body tilt.
    Kaptein RG; Van Gisbergen JA
    J Neurophysiol; 2004 May; 91(5):2205-14. PubMed ID: 14668294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visually perceived vertical (VPV): induced changes in orientation by 1-line and 2-line roll-tilted and pitched visual fields.
    Li W; Matin L
    Vision Res; 2005 Jul; 45(15):2037-57. PubMed ID: 15820520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-individual differences in the polarity of early visual responses and attention effects.
    Proverbio AM; Del Zotto M; Zani A
    Neurosci Lett; 2007 May; 419(2):131-6. PubMed ID: 17490815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Selectivity of the neuronal responses of the human brain to different angular orientations of visual stimuli].
    Medvedev SV; Abdullaev IaG; Puzenko VIu
    Neirofiziologiia; 1987; 19(1):3-11. PubMed ID: 3574551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of perceived egocentric coordinates on the subjective visual vertical.
    Ceyte H; Cian C; Trousselard M; Barraud PA
    Neurosci Lett; 2009 Oct; 462(1):85-8. PubMed ID: 19545600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceived self-orientation in allocentric and egocentric space: effects of visual and physical tilt on saccadic and tactile measures.
    Barnett-Cowan M; Harris LR
    Brain Res; 2008 Nov; 1242():231-43. PubMed ID: 18706895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An event-related potential study on perceptual learning in grating orientation discrimination.
    Song Y; Peng D; Lu C; Liu C; Li X; Liu P; Qu Z; Ding Y
    Neuroreport; 2007 Jun; 18(9):945-8. PubMed ID: 17515807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body-tilt and visual verticality perception during multiple cycles of roll rotation.
    Vingerhoets RA; Medendorp WP; Van Gisbergen JA
    J Neurophysiol; 2008 May; 99(5):2264-80. PubMed ID: 18337369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive dynamics in cortical responses to visual stimuli.
    Moldakarimov S; Rollenhagen JE; Olson CR; Chow CC
    J Neurophysiol; 2005 Nov; 94(5):3388-96. PubMed ID: 15944239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered cortical visual processing in individuals with a spreading photoparoxysmal EEG response.
    Siniatchkin M; Moeller F; Shepherd A; Siebner H; Stephani U
    Eur J Neurosci; 2007 Jul; 26(2):529-36. PubMed ID: 17650123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explanation of contextual modulation by short-range isotropic connections and orientation map geometry in the primary visual cortex.
    Okamoto T; Watanabe M; Aihara K; Kondo S
    Biol Cybern; 2004 Dec; 91(6):396-407. PubMed ID: 15597178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bottom-up and top-down dynamics in visual cortex.
    Schummers J; Sharma J; Sur M
    Prog Brain Res; 2005; 149():65-81. PubMed ID: 16226577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial choices of macaque monkeys based on the visual representation of the response space: rotation of the stimuli.
    Nedvidek J; Nekovarova T; Bures J
    Behav Brain Res; 2008 Nov; 193(2):204-8. PubMed ID: 18588916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERP topography and human perceptual learning in the peripheral visual field.
    Shoji H; Skrandies W
    Int J Psychophysiol; 2006 Aug; 61(2):179-87. PubMed ID: 16356572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.