BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15174345)

  • 1. [The role of glycogen phosphorylase kinase in regulation of sarcoplasmic reticulum Ca-atpase of frog Rana Temporaria].
    Shmelev VK; Serebrenikova TP; Nesterov VP
    Zh Evol Biokhim Fiziol; 2004; 40(1):82-4. PubMed ID: 15174345
    [No Abstract]   [Full Text] [Related]  

  • 2. [In vitro formation of glycogenolytic enzyme complexes with the sarcoplasmic reticulum in the skeletal muscles of skates and the frog].
    Serebrenikova TP; Shmelev VK
    Zh Evol Biokhim Fiziol; 1986; 22(2):196-200. PubMed ID: 2940777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Substrate activation of Ca(2+)-ATPase in sarcoplasmic reticulum in skeletal muscles of ectothermic animals].
    Shmelev VK
    Zh Evol Biokhim Fiziol; 2004; 40(4):316-8. PubMed ID: 15481369
    [No Abstract]   [Full Text] [Related]  

  • 4. Functional compartmentation of glycogen phosphorylase with creatine kinase and Ca2+ ATPase in skeletal muscle.
    Field ML; Khan O; Abbaraju J; Clark JF
    J Theor Biol; 2006 Jan; 238(2):257-68. PubMed ID: 16005021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Association of rabbit skeletal muscle phosphorylase kinase with sarcoplasmic reticulum membranes].
    Zemskova MA; Shur SA; Skolysheva LK; Vul'fson PL
    Biokhimiia; 1995 Nov; 60(11):1903-10. PubMed ID: 8590760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of the 100 000 Mr Ca2+-transport ATPase by Ca2+ or cyclic AMP-dependent and -independent protein kinases.
    Varsanyi M; Heilmeyer LM
    FEBS Lett; 1981 Aug; 131(2):223-8. PubMed ID: 6271572
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect of calmodulin inhibitor trifluoperazine on calcium activation of phosphorylase in glycosomes of rabbit skeletal muscles].
    Larionov NP; Feoktistov IA
    Biull Eksp Biol Med; 1982 Sep; 94(9):35-6. PubMed ID: 7171821
    [No Abstract]   [Full Text] [Related]  

  • 8. The dimeric form of Ca2+-ATPase is involved in Ca2+ transport in the sarcoplasmic reticulum.
    Ushimaru M; Fukushima Y
    Biochem J; 2008 Sep; 414(3):357-61. PubMed ID: 18471093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that phosphorylase kinase exhibits phosphatidylinositol kinase activity.
    Georgoussi Z; Heilmeyer LM
    Biochemistry; 1986 Jul; 25(13):3867-74. PubMed ID: 3017408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the Ca2+-ATPase of sarcoplasmic reticulum.
    Martonosi AN; Pikula S
    Acta Biochim Pol; 2003; 50(2):337-65. PubMed ID: 12833162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the sarcoplasmic reticular Ca2+ transport ATPase by phosphorylation and dephosphorylation.
    Heilmeyer LM; Varsanyi M
    Z Naturforsch C Biosci; 1982; 37(7-8):682-4. PubMed ID: 6291268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [ATPase activity of the sarcoplasmic reticulum of different skeletal muscles of the frog Rana temporaria].
    Dobrynina OV; Morozov NN
    Zh Evol Biokhim Fiziol; 1974 May; 10(3):307-9. PubMed ID: 4275609
    [No Abstract]   [Full Text] [Related]  

  • 13. Thyroid hormones differentially regulate the distribution of rabbit skeletal muscle Ca(2+)-ATPase (SERCA) isoforms in light and heavy sarcoplasmic reticulum.
    Arruda AP; Oliveira GM; Carvalho DP; De Meis L
    Mol Membr Biol; 2005; 22(6):529-37. PubMed ID: 16373324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of molecular-kinetic properties and characteristics of the activation of glycogen phosphorylase b from skeletal muscles of the frog Rana temporaria].
    Serebrenikova TP; Shmelev VK; Nesterov VP
    Zh Evol Biokhim Fiziol; 1998; 34(3):319-24. PubMed ID: 9783380
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for the participation of a Ca2+-dependent protein kinase and protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 2. Effect of phosphorylase kinase and phosphorylase phosphatase.
    Hörl WH; Heilmeyer LM
    Biochemistry; 1978 Mar; 17(5):766-72. PubMed ID: 204329
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium-dependent adsorption and desorption of phosphorylase kinase on membrane fractions of sarcoplasmic reticulum.
    Jennissen HP; Lahr P
    FEBS Lett; 1980 Nov; 121(1):143-8. PubMed ID: 7461108
    [No Abstract]   [Full Text] [Related]  

  • 17. [The characteristics of the interaction of glycogenolytic enzymes with glycogen in endothermic and ectothermic animals].
    Serebrenikova TP; Shmelev VK
    Zh Evol Biokhim Fiziol; 1992; 28(5):570-5. PubMed ID: 1300015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glycogen phosphorylase activation by glycogen phosphorylase kinases: dependence on ATP concentration and species specificity of enzymes].
    Serebrenikova TP; Nesterov VP
    Zh Evol Biokhim Fiziol; 2002; 38(2):187-9. PubMed ID: 12070923
    [No Abstract]   [Full Text] [Related]  

  • 19. Modification of the pH dependence of animal and plant transport ATPases by sulfated polysaccharides.
    Rocha JB; Landeira-Fernandez AM; de Meis L
    Biochem Biophys Res Commun; 1998 Mar; 244(3):720-3. PubMed ID: 9535731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of sarco/endoplasmic reticulum Ca(2+)-ATPase in thermogenesis.
    de Meis L; Arruda AP; Carvalho DP
    Biosci Rep; 2005; 25(3-4):181-90. PubMed ID: 16283552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.