These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15174593)

  • 1. Influence of DNA on volatile generation from Maillard reaction of cysteine and ribose.
    Chen Y; Chin CK; Ho CT
    Adv Exp Med Biol; 2004; 542():327-40. PubMed ID: 15174593
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation of aroma compounds from ribose and cysteine during the Maillard reaction.
    Cerny C; Davidek T
    J Agric Food Chem; 2003 Apr; 51(9):2714-21. PubMed ID: 12696962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structured fluids as microreactors for flavor formation by the Maillard reaction.
    Vauthey S; Milo C; Frossard P; Garti N; Leser ME; Watzke HJ
    J Agric Food Chem; 2000 Oct; 48(10):4808-16. PubMed ID: 11052737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of beef-like odorants from glutathione-enriched yeast extract
    Raza A; Song H; Raza J; Li P; Li K; Yao J
    Food Funct; 2020 Oct; 11(10):8583-8601. PubMed ID: 33026027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of urea on volatile generation from Maillard reaction of cysteine and ribose.
    Chen Y; Xing J; Chin CK; Ho CT
    J Agric Food Chem; 2000 Aug; 48(8):3512-6. PubMed ID: 10956141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of carnosine on volatile generation from Maillard reaction of ribose and cysteine.
    Chen Y; Ho CT
    J Agric Food Chem; 2002 Apr; 50(8):2372-6. PubMed ID: 11929299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of sulfur aroma compounds in reaction mixtures containing cysteine and three different forms of ribose.
    Mottram DS; Nobrega IC
    J Agric Food Chem; 2002 Jul; 50(14):4080-6. PubMed ID: 12083887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible mechanism for involvement of cysteine in aroma production in wine.
    Marchand S; de Revel G; Vercauteren J; Bertrand A
    J Agric Food Chem; 2002 Oct; 50(21):6160-4. PubMed ID: 12358496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a new Maillard type reaction product generated by heating 1-deoxymaltulosyl-glycine in the presence of cysteine.
    Ota M; Kohmura M; Kawaguchi H
    J Agric Food Chem; 2006 Jul; 54(14):5127-31. PubMed ID: 16819926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking.
    Ames JM; Guy RC; Kipping GJ
    J Agric Food Chem; 2001 Apr; 49(4):1885-94. PubMed ID: 11308341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate.
    Chen X; Yu J; Cui H; Xia S; Zhang X; Yang B
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29373560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha-mercaptoketone formation during the maillard reaction of cysteine and [1-(13)C]ribose.
    Cerny C; Davidek T
    J Agric Food Chem; 2004 Feb; 52(4):958-61. PubMed ID: 14969557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.
    Ong OXH; Seow YX; Ong PKC; Zhou W
    Ultrason Sonochem; 2015 Sep; 26():399-407. PubMed ID: 25640682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursors of chicken flavor. II. Identification of key flavor precursors using sensory methods.
    Aliani M; Farmer LJ
    J Agric Food Chem; 2005 Aug; 53(16):6455-62. PubMed ID: 16076134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of 5-hydroxy-3-mercapto-2-pentanone in the maillard reaction of thiamine, cysteine, and xylose.
    Cerny C; Guntz-Dubini R
    J Agric Food Chem; 2008 Nov; 56(22):10679-82. PubMed ID: 18983164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Maillard compounds from inulin during the thermal processing of Agave tequilana Weber Var. azul.
    Mancilla-Margalli NA; López MG
    J Agric Food Chem; 2002 Feb; 50(4):806-12. PubMed ID: 11829648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose.
    Xu Y; Chen Q; Lei S; Wu P; Fan G; Xu X; Pan S
    J Sci Food Agric; 2011 Sep; 91(12):2241-6. PubMed ID: 21618545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of volatiles from the thermal decomposition of Amadori rearrangement products in the cysteine-glucose Maillard reaction and density functional theory study.
    Lei L; Wang S; Zhao Z; Dou S; Zhang S; Wang Y; Gao P; Binchen Wang ; Xu X; Dong L
    Food Res Int; 2024 Jul; 188():114454. PubMed ID: 38823832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating and cysteine effect on physicochemical and flavor properties of soybean peptide Maillard reaction products.
    Zhang Z; Elfalleh W; He S; Tang M; Zhao J; Wu Z; Wang J; Sun H
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2137-2146. PubMed ID: 30223057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.