BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15174634)

  • 1. Epr spectroscopic evidence of free radical outflow from an isolated muscle bed in exercising humans: functional significance of decreasing intracellular PO2 vs. increasing O2 flux.
    Bailey DM; Davies B; Young IS; Jackson MJ; Davison GW; Isaacson R; Richardson RS
    Adv Exp Med Biol; 2003; 540():297-303. PubMed ID: 15174634
    [No Abstract]   [Full Text] [Related]  

  • 2. EPR spectroscopic detection of free radical outflow from an isolated muscle bed in exercising humans.
    Bailey DM; Davies B; Young IS; Jackson MJ; Davison GW; Isaacson R; Richardson RS
    J Appl Physiol (1985); 2003 May; 94(5):1714-8. PubMed ID: 12626489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of free radical outflow from an isolated muscle bed in exercising humans.
    Bailey DM; Young IS; McEneny J; Lawrenson L; Kim J; Barden J; Richardson RS
    Am J Physiol Heart Circ Physiol; 2004 Oct; 287(4):H1689-99. PubMed ID: 15155256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise.
    Pedersen PK; Kiens B; Saltin B
    Acta Physiol Scand; 1999 Aug; 166(4):309-18. PubMed ID: 10468668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen transport: air to muscle cell.
    Richardson RS
    Med Sci Sports Exerc; 1998 Jan; 30(1):53-9. PubMed ID: 9475644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation.
    Bailey DM; Rasmussen P; Evans KA; Bohm AM; Zaar M; Nielsen HB; Brassard P; Nordsborg NB; Homann PH; Raven PB; McEneny J; Young IS; McCord JM; Secher NH
    Free Radic Biol Med; 2018 Aug; 124():104-113. PubMed ID: 29859345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption.
    Englund EK; Rodgers ZB; Langham MC; Mohler ER; Floyd TF; Wehrli FW
    Magn Reson Med; 2018 Feb; 79(2):846-855. PubMed ID: 28497497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise O2 transport model assuming zero cytochrome PO2 at VO2 max.
    Severinghaus JW
    J Appl Physiol (1985); 1994 Aug; 77(2):671-8. PubMed ID: 8002513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate efflux from exercising human skeletal muscle: role of intracellular PO2.
    Richardson RS; Noyszewski EA; Leigh JS; Wagner PD
    J Appl Physiol (1985); 1998 Aug; 85(2):627-34. PubMed ID: 9688741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of .VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise.
    Paterson ND; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2005 Aug; 99(2):683-90. PubMed ID: 15817720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy.
    Lucero AA; Addae G; Lawrence W; Neway B; Credeur DP; Faulkner J; Rowlands D; Stoner L
    Exp Physiol; 2018 Jan; 103(1):90-100. PubMed ID: 29034529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise.
    DeLorey DS; Paterson DH; Kowalchuk JM
    Appl Physiol Nutr Metab; 2007 Dec; 32(6):1251-62. PubMed ID: 18059603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a pre-workout supplement on hyperemia following leg extension resistance exercise to failure with different resistance loads.
    Martin JS; Mumford PW; Haun CT; Luera MJ; Muddle TWD; Colquhoun RJ; Feeney MP; Mackey CS; Roberson PA; Young KC; Pascoe DD; DeFreitas JM; Jenkins NDM; Roberts MD
    J Int Soc Sports Nutr; 2017; 14():38. PubMed ID: 28959158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In health and in a normoxic environment, VO2 max is/is not limited primarily by cardiac output and locomotor muscle blood flow.
    Connes P; Yalcin O; Baskurt O; Brun JF; Hardeman M
    J Appl Physiol (1985); 2006 Jun; 100(6):2099. PubMed ID: 16714417
    [No Abstract]   [Full Text] [Related]  

  • 15. Respiratory muscle work compromises leg blood flow during maximal exercise.
    Harms CA; Babcock MA; McClaran SR; Pegelow DF; Nickele GA; Nelson WB; Dempsey JA
    J Appl Physiol (1985); 1997 May; 82(5):1573-83. PubMed ID: 9134907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Oxygen transport in skeletal muscles working with its maximum consumption during hypoxemia].
    Man'kovs'ka IM; Liabakh KH
    Fiziol Zh (1994); 2003; 49(3):75-9. PubMed ID: 12918254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrepancy between femoral and capillary blood flow kinetics during knee extension exercise.
    Schlup SJ; Ade CJ; Broxterman RM; Barstow TJ
    Respir Physiol Neurobiol; 2015 Dec; 219():69-77. PubMed ID: 26304841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of blood flow on PvO2-VO2 relation in contracting in situ skeletal muscle.
    Kohzuki H; Misawa H; Sakata S; Takaki M
    Adv Exp Med Biol; 2003; 510():261-5. PubMed ID: 12580438
    [No Abstract]   [Full Text] [Related]  

  • 19. Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans.
    Strange S
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):283-91. PubMed ID: 9831733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfusion, diffusion and their heterogeneities limiting blood-tissue O2 transfer in muscle.
    Piiper J
    Acta Physiol Scand; 2000 Apr; 168(4):603-7. PubMed ID: 10759596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.