These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15174970)

  • 1. Hydrogels for oral delivery of therapeutic proteins.
    Peppas NA; Wood KM; Blanchette JO
    Expert Opin Biol Ther; 2004 Jun; 4(6):881-7. PubMed ID: 15174970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery.
    Li X; Fu M; Wu J; Zhang C; Deng X; Dhinakar A; Huang W; Qian H; Ge L
    Acta Biomater; 2017 Mar; 51():294-303. PubMed ID: 28069504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral Insulin: Current Status, Challenges, and Future Perspectives.
    Chellappan DK; Yenese Y; Wei CC; Chellian J; Gupta G
    J Environ Pathol Toxicol Oncol; 2017; 36(4):283-291. PubMed ID: 29431061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro-In Vivo Evaluation of an Oral Ghost Drug Delivery Device for the Delivery of Salmon Calcitonin.
    Hibbins AR; Govender M; Indermun S; Kumar P; du Toit LC; Choonara YE; Pillay V
    J Pharm Sci; 2018 Jun; 107(6):1605-1614. PubMed ID: 29452142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a P((MAA-co-NVP)-g-EG) Hydrogel Platform for Oral Protein Delivery: Effects of Hydrogel Composition on Environmental Response and Protein Partitioning.
    Steichen S; O'Connor C; Peppas NA
    Macromol Biosci; 2017 Jan; 17(1):. PubMed ID: 27689827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles.
    Peppas NA; Kavimandan NJ
    Eur J Pharm Sci; 2006 Nov; 29(3-4):183-97. PubMed ID: 16777391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular hydrogel of a D-amino acid dipeptide for controlled drug release in vivo.
    Liang G; Yang Z; Zhang R; Li L; Fan Y; Kuang Y; Gao Y; Wang T; Lu WW; Xu B
    Langmuir; 2009 Aug; 25(15):8419-22. PubMed ID: 20050040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel biomaterials: a smart future?
    Kopecek J
    Biomaterials; 2007 Dec; 28(34):5185-92. PubMed ID: 17697712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photopolymerizable hydrogels for tissue engineering applications.
    Nguyen KT; West JL
    Biomaterials; 2002 Nov; 23(22):4307-14. PubMed ID: 12219820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.
    Koetting MC; Guido JF; Gupta M; Zhang A; Peppas NA
    J Control Release; 2016 Jan; 221():18-25. PubMed ID: 26616761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats.
    Morishita M; Goto T; Nakamura K; Lowman AM; Takayama K; Peppas NA
    J Control Release; 2006 Feb; 110(3):587-94. PubMed ID: 16325951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salicylic acid-based pH-sensitive hydrogels as potential oral insulin delivery systems.
    Demirdirek B; Uhrich KE
    J Drug Target; 2015; 23(7-8):716-24. PubMed ID: 26453167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalently crosslinked organophosphorous derivatives-chitosan hydrogel as a drug delivery system for oral administration of camptothecin.
    Martínez-Martínez M; Rodríguez-Berna G; Bermejo M; Gonzalez-Alvarez I; Gonzalez-Alvarez M; Merino V
    Eur J Pharm Biopharm; 2019 Mar; 136():174-183. PubMed ID: 30654016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production methodologies of polymeric and hydrogel particles for drug delivery applications.
    Lima AC; Sher P; Mano JF
    Expert Opin Drug Deliv; 2012 Feb; 9(2):231-48. PubMed ID: 22250602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo absorption studies of insulin from an oral delivery system.
    Jerry N; Anitha Y; Sharma CP; Sony P
    Drug Deliv; 2001; 8(1):19-23. PubMed ID: 11280439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery.
    Gao X; Cao Y; Song X; Zhang Z; Zhuang X; He C; Chen X
    Macromol Biosci; 2014 Apr; 14(4):565-75. PubMed ID: 24357554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.
    Kondiah PJ; Choonara YE; Kondiah PP; Marimuthu T; Kumar P; du Toit LC; Pillay V
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27879635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.
    Mundargi RC; Rangaswamy V; Aminabhavi TM
    J Microencapsul; 2011; 28(5):384-94. PubMed ID: 21736523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of novel delivery systems of drugs for the treatment of diabetes and osteoporosis].
    Yamamoto A
    Yakugaku Zasshi; 2010 Sep; 130(9):1113-4. PubMed ID: 20823667
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.