These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15175017)

  • 1. Templated assembly of the pH-sensitive membrane-lytic peptide GALA.
    Haas DH; Murphy RM
    J Pept Res; 2004 Jun; 63(6):451-9. PubMed ID: 15175017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide.
    Nicol F; Nir S; Szoka FC
    Biophys J; 1996 Dec; 71(6):3288-301. PubMed ID: 8968598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system.
    Kakudo T; Chaki S; Futaki S; Nakase I; Akaji K; Kawakami T; Maruyama K; Kamiya H; Harashima H
    Biochemistry; 2004 May; 43(19):5618-28. PubMed ID: 15134436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and porin-like channel activity of a beta sheet peptide.
    Thundimadathil J; Roeske RW; Jiang HY; Guo L
    Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a pH-sensitive pore-forming peptide with improved performance.
    Haas DH; Murphy RM
    J Pept Res; 2004 Jan; 63(1):9-16. PubMed ID: 14984568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural effects and lipid membrane interactions of the pH-responsive GALA peptide with fatty acid acylation.
    Lin BF; Missirlis D; Krogstad DV; Tirrell M
    Biochemistry; 2012 Jun; 51(23):4658-68. PubMed ID: 22591394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.
    Wiedman G; Wimley WC; Hristova K
    Biochim Biophys Acta; 2015 Apr; 1848(4):951-7. PubMed ID: 25572997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin.
    Pardo-López L; Gómez I; Muñoz-Garay C; Jiménez-Juarez N; Soberón M; Bravo A
    J Invertebr Pathol; 2006 Jul; 92(3):172-7. PubMed ID: 16777138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of membrane-active GALA-OKT9 conjugates.
    Kuehne J; Murphy RM
    Bioconjug Chem; 2001; 12(5):742-9. PubMed ID: 11562192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-channel formation assisted by electrostatic interhelical interactions in covalently dimerized amphiphilic helical peptides.
    Taira J; Jelokhani-Niaraki M; Osada S; Kato F; Kodama H
    Biochemistry; 2008 Mar; 47(12):3705-14. PubMed ID: 18302338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustered versus Uniform Display of GALA-Peptides on Carrier Nanoparticles: Enhancing the Permeation of Noncharged Fluid Lipid Membranes.
    Locke T; Sofou S
    Langmuir; 2017 Nov; 33(47):13625-13633. PubMed ID: 29096061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sticky water surfaces: helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface.
    Schach D; Globisch C; Roeters SJ; Woutersen S; Fuchs A; Weiss CK; Backus EH; Landfester K; Bonn M; Peter C; Weidner T
    J Chem Phys; 2014 Dec; 141(22):22D517. PubMed ID: 25494788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The incorporation of GALA peptide into a protein cage for an acid-inducible molecular switch.
    Choi SH; Choi K; Chan Kwon I; Ahn HJ
    Biomaterials; 2010 Jul; 31(19):5191-8. PubMed ID: 20359742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.
    Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M
    Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic targeting of macromolecules using a pH-dependent fusogenic peptide in combination with cationic liposomes.
    Kobayashi S; Nakase I; Kawabata N; Yu HH; Pujals S; Imanishi M; Giralt E; Futaki S
    Bioconjug Chem; 2009 May; 20(5):953-9. PubMed ID: 19388672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation and membrane permeabilizing properties of designed histidine-containing cationic linear peptide antibiotics.
    Marquette A; Mason AJ; Bechinger B
    J Pept Sci; 2008 Apr; 14(4):488-95. PubMed ID: 18085719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.