These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 15175227)
21. GABA-mediated synchronization in the human neocortex: elevations in extracellular potassium and presynaptic mechanisms. Louvel J; Papatheodoropoulos C; Siniscalchi A; Kurcewicz I; Pumain R; Devaux B; Turak B; Esposito V; Villemeure JG; Avoli M Neuroscience; 2001; 105(4):803-13. PubMed ID: 11530219 [TBL] [Abstract][Full Text] [Related]
22. GABA(B) receptor activation promotes seizure activity in the juvenile rat hippocampus. Motalli R; Louvel J; Tancredi V; Kurcewicz I; Wan-Chow-Wah D; Pumain R; Avoli M J Neurophysiol; 1999 Aug; 82(2):638-47. PubMed ID: 10444662 [TBL] [Abstract][Full Text] [Related]
23. Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy. Loup F; Picard F; Yonekawa Y; Wieser HG; Fritschy JM Brain; 2009 Sep; 132(Pt 9):2449-63. PubMed ID: 19574438 [TBL] [Abstract][Full Text] [Related]
24. Stereoselective effects of the novel anticonvulsant lacosamide against 4-AP induced epileptiform activity in rat visual cortex in vitro. Lees G; Stöhr T; Errington AC Neuropharmacology; 2006 Jan; 50(1):98-110. PubMed ID: 16225894 [TBL] [Abstract][Full Text] [Related]
25. Dysfunction of GABAA receptor glycolysis-dependent modulation in human partial epilepsy. Laschet JJ; Kurcewicz I; Minier F; Trottier S; Khallou-Laschet J; Louvel J; Gigout S; Turak B; Biraben A; Scarabin JM; Devaux B; Chauvel P; Pumain R Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3472-7. PubMed ID: 17360668 [TBL] [Abstract][Full Text] [Related]
26. Epileptiform activity induced by pharmacologic reduction of M-current in the developing hippocampus in vitro. Peña F; Alavez-Pérez N Epilepsia; 2006 Jan; 47(1):47-54. PubMed ID: 16417531 [TBL] [Abstract][Full Text] [Related]
27. Leading role of the piriform cortex over the neocortex in the generation of spontaneous interictal spikes during block of GABA(A) receptors. Rigas P; Castro-Alamancos MA Neuroscience; 2004; 124(4):953-61. PubMed ID: 15026135 [TBL] [Abstract][Full Text] [Related]
28. Inwardly rectifying K(+) (Kir) channels antagonize ictal-like epileptiform activity in area CA1 of the rat hippocampus. Andreasen M; Skov J; Nedergaard S Hippocampus; 2007; 17(11):1037-48. PubMed ID: 17604346 [TBL] [Abstract][Full Text] [Related]
29. Epileptiform discharges in the human dysplastic neocortex: in vitro physiology and pharmacology. Avoli M; Bernasconi A; Mattia D; Olivier A; Hwa GG Ann Neurol; 1999 Dec; 46(6):816-26. PubMed ID: 10589533 [TBL] [Abstract][Full Text] [Related]
30. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain. Uva L; Librizzi L; Wendling F; de Curtis M Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157 [TBL] [Abstract][Full Text] [Related]
31. Shunting and hyperpolarizing GABAergic inhibition in the high-potassium model of ictogenesis in the developing rat hippocampus. Isaev D; Isaeva E; Khazipov R; Holmes GL Hippocampus; 2007; 17(3):210-9. PubMed ID: 17294460 [TBL] [Abstract][Full Text] [Related]
32. Neuron-glia relationships in human and experimental epilepsy: a biochemical point of view. Grisar TM Adv Neurol; 1986; 44():1045-73. PubMed ID: 2871719 [TBL] [Abstract][Full Text] [Related]
33. Lability of GABAA receptor function in human partial epilepsy: possible relationship to hypometabolism. Pumain R; Ahmed MS; Kurcewicz I; Trottier S; Louvel J; Turak B; Devaux B; Laschet J Epilepsia; 2008 Nov; 49 Suppl 8():87-90. PubMed ID: 19049598 [TBL] [Abstract][Full Text] [Related]
34. Expression of adhesion factors induced by epileptiform activity in the endothelium of the isolated guinea pig brain in vitro. Librizzi L; Regondi MC; Pastori C; Frigerio S; Frassoni C; de Curtis M Epilepsia; 2007 Apr; 48(4):743-51. PubMed ID: 17386052 [TBL] [Abstract][Full Text] [Related]
35. Hypersynchronous ictal onset in the perirhinal cortex results from dynamic weakening in inhibition. Köhling R; D'Antuono M; Benini R; de Guzman P; Avoli M Neurobiol Dis; 2016 Mar; 87():1-10. PubMed ID: 26699817 [TBL] [Abstract][Full Text] [Related]
36. Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices of GABAB1 receptor subunit knockout mice. Brown JT; Gill CH; Farmer CE; Lanneau C; Randall AD; Pangalos MN; Collingridge GL; Davies CH Epilepsy Res; 2003 Dec; 57(2-3):121-36. PubMed ID: 15013053 [TBL] [Abstract][Full Text] [Related]
37. Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Chang M; Dian JA; Dufour S; Wang L; Moradi Chameh H; Ramani M; Zhang L; Carlen PL; Womelsdorf T; Valiante TA Neurobiol Dis; 2018 Jan; 109(Pt A):102-116. PubMed ID: 29024712 [TBL] [Abstract][Full Text] [Related]
38. Unchanged glutamine synthetase activity and increased NMDA receptor density in epileptic human neocortex: implications for the pathophysiology of epilepsy. Steffens M; Huppertz HJ; Zentner J; Chauzit E; Feuerstein TJ Neurochem Int; 2005 Nov; 47(6):379-84. PubMed ID: 16095760 [TBL] [Abstract][Full Text] [Related]
39. Effects in vitro and in vivo of a gap junction blocker on epileptiform activities in a genetic model of absence epilepsy. Gigout S; Louvel J; Pumain R Epilepsy Res; 2006 Apr; 69(1):15-29. PubMed ID: 16466906 [TBL] [Abstract][Full Text] [Related]
40. KCC2 antagonism increases neuronal network excitability but disrupts ictogenesis in vitro. Chen LY; Lévesque M; Avoli M J Neurophysiol; 2019 Sep; 122(3):1163-1173. PubMed ID: 31339790 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]