These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 15175290)
21. Role of sigmaD in regulating genes and signals during Myxococcus xanthus development. Viswanathan P; Singer M; Kroos L J Bacteriol; 2006 May; 188(9):3246-56. PubMed ID: 16621817 [TBL] [Abstract][Full Text] [Related]
22. Identification of the minimum regulatory region of a Myxococcus xanthus A-signal-dependent developmental gene. Gulati P; Xu D; Kaplan HB J Bacteriol; 1995 Aug; 177(16):4645-51. PubMed ID: 7642490 [TBL] [Abstract][Full Text] [Related]
23. Regulation of FRUA expression during vegetative growth and development of Myxococcus xanthus. Horiuchi T; Akiyama T; Inouye S; Komano T J Mol Microbiol Biotechnol; 2003; 5(2):87-96. PubMed ID: 12736531 [TBL] [Abstract][Full Text] [Related]
24. The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation. Giglio KM; Zhu C; Klunder C; Kummer S; Garza AG J Bacteriol; 2015 Apr; 197(7):1276-87. PubMed ID: 25645554 [TBL] [Abstract][Full Text] [Related]
25. Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development. Mittal S; Kroos L J Bacteriol; 2009 Apr; 191(8):2753-63. PubMed ID: 19201804 [TBL] [Abstract][Full Text] [Related]
26. Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor. Ward MJ; Lew H; Treuner-Lange A; Zusman DR J Bacteriol; 1998 Nov; 180(21):5668-75. PubMed ID: 9791117 [TBL] [Abstract][Full Text] [Related]
27. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Ueki T; Inouye S Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8782-7. PubMed ID: 12851461 [TBL] [Abstract][Full Text] [Related]
28. SigF, a new sigma factor required for a motility system of Myxococcus xanthus. Ueki T; Xu CY; Inouye S J Bacteriol; 2005 Dec; 187(24):8537-41. PubMed ID: 16321963 [TBL] [Abstract][Full Text] [Related]
29. ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. Moreno AJ; Fontes M; Murillo FJ J Bacteriol; 2001 Jan; 183(2):557-69. PubMed ID: 11133949 [TBL] [Abstract][Full Text] [Related]
30. Analysis of fruE, a novel developmental gene of Myxococcus xanthus. Akiyama T; Komano T J Mol Microbiol Biotechnol; 2003; 6(3-4):164-73. PubMed ID: 15153769 [TBL] [Abstract][Full Text] [Related]
31. Combinatorial regulation of the dev operon by MrpC2 and FruA during Myxococcus xanthus development. Campbell A; Viswanathan P; Barrett T; Son B; Saha S; Kroos L J Bacteriol; 2015 Jan; 197(2):240-51. PubMed ID: 25349159 [TBL] [Abstract][Full Text] [Related]
32. Combinatorial regulation of genes essential for Myxococcus xanthus development involves a response regulator and a LysR-type regulator. Viswanathan P; Ueki T; Inouye S; Kroos L Proc Natl Acad Sci U S A; 2007 May; 104(19):7969-74. PubMed ID: 17470804 [TBL] [Abstract][Full Text] [Related]
33. Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function σ/anti-σ pair and a global regulatory complex. Bernal-Bernal D; Abellón-Ruiz J; Iniesta AA; Pajares-Martínez E; Bastida-Martínez E; Fontes M; Padmanabhan S; Elías-Arnanz M Nucleic Acids Res; 2018 Jul; 46(13):6726-6745. PubMed ID: 29893914 [TBL] [Abstract][Full Text] [Related]
34. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Søgaard-Andersen L; Slack FJ; Kimsey H; Kaiser D Genes Dev; 1996 Mar; 10(6):740-54. PubMed ID: 8598300 [TBL] [Abstract][Full Text] [Related]
35. CIRCE element evolved for the coordinated transcriptional regulation of bacterial duplicate groELs. Zhuo L; Zhang Z; Pan Z; Sheng DH; Hu W; Li YZ Biochim Biophys Acta Gene Regul Mech; 2018 Oct; 1861(10):928-937. PubMed ID: 30496038 [TBL] [Abstract][Full Text] [Related]
36. In depth analysis of the mechanism of action of metal-dependent sigma factors: characterization of CorE2 from Myxococcus xanthus. Marcos-Torres FJ; Pérez J; Gómez-Santos N; Moraleda-Muñoz A; Muñoz-Dorado J Nucleic Acids Res; 2016 Jul; 44(12):5571-84. PubMed ID: 26951374 [TBL] [Abstract][Full Text] [Related]
37. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Kroos L; Kaiser D Proc Natl Acad Sci U S A; 1984 Sep; 81(18):5816-20. PubMed ID: 6091110 [TBL] [Abstract][Full Text] [Related]
38. The Myxococcus xanthus wbgB gene encodes a glycosyltransferase homologue required for lipopolysaccharide O-antigen biosynthesis. Yang Z; Guo D; Bowden MG; Sun H; Tong L; Li Z; Brown AE; Kaplan HB; Shi W Arch Microbiol; 2000 Dec; 174(6):399-405. PubMed ID: 11195095 [TBL] [Abstract][Full Text] [Related]
39. The Rhodobacter sphaeroides ECF sigma factor, sigma(E), and the target promoters cycA P3 and rpoE P1. Newman JD; Falkowski MJ; Schilke BA; Anthony LC; Donohue TJ J Mol Biol; 1999 Nov; 294(2):307-20. PubMed ID: 10610760 [TBL] [Abstract][Full Text] [Related]
40. Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus. Robinson M; Son B; Kroos D; Kroos L BMC Genomics; 2014 Dec; 15():1123. PubMed ID: 25515642 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]