BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 15175754)

  • 1. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene.
    Martens JA; Laprade L; Winston F
    Nature; 2004 Jun; 429(6991):571-4. PubMed ID: 15175754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulation: a reason for reading nonsense.
    Schmitt S; Paro R
    Nature; 2004 Jun; 429(6991):510-1. PubMed ID: 15175733
    [No Abstract]   [Full Text] [Related]  

  • 3. The Paf1 complex represses SER3 transcription in Saccharomyces cerevisiae by facilitating intergenic transcription-dependent nucleosome occupancy of the SER3 promoter.
    Pruneski JA; Hainer SJ; Petrov KO; Martens JA
    Eukaryot Cell; 2011 Oct; 10(10):1283-94. PubMed ID: 21873510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae.
    Martens JA; Wu PY; Winston F
    Genes Dev; 2005 Nov; 19(22):2695-704. PubMed ID: 16291644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II.
    Thebault P; Boutin G; Bhat W; Rufiange A; Martens J; Nourani A
    Mol Cell Biol; 2011 Mar; 31(6):1288-300. PubMed ID: 21220514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intergenic transcription causes repression by directing nucleosome assembly.
    Hainer SJ; Pruneski JA; Mitchell RD; Monteverde RM; Martens JA
    Genes Dev; 2011 Jan; 25(1):29-40. PubMed ID: 21156811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIR-dependent repression of non-telomeric genes in Saccharomyces cerevisiae?
    Marchfelder U; Rateitschak K; Ehrenhofer-Murray AE
    Yeast; 2003 Jul; 20(9):797-801. PubMed ID: 12845605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae.
    Ishida C; Aranda C; Valenzuela L; Riego L; Deluna A; Recillas-Targa F; Filetici P; López-Revilla R; González A
    Mol Microbiol; 2006 Mar; 59(6):1790-806. PubMed ID: 16553884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway.
    Samanta MP; Tongprasit W; Sethi H; Chin CS; Stolc V
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4192-7. PubMed ID: 16537507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise in eukaryotic gene expression.
    Blake WJ; KAErn M; Cantor CR; Collins JJ
    Nature; 2003 Apr; 422(6932):633-7. PubMed ID: 12687005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis.
    Børsting C; Hummel R; Schultz ER; Rose TM; Pedersen MB; Knudsen J; Kristiansen K
    Yeast; 1997 Dec; 13(15):1409-21. PubMed ID: 9434347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae.
    Agricola E; Verdone L; Xella B; Di Mauro E; Caserta M
    Biochemistry; 2004 Jul; 43(27):8878-84. PubMed ID: 15236596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes.
    Wade JT; Hall DB; Struhl K
    Nature; 2004 Dec; 432(7020):1054-8. PubMed ID: 15616568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear pore association confers optimal expression levels for an inducible yeast gene.
    Taddei A; Van Houwe G; Hediger F; Kalck V; Cubizolles F; Schober H; Gasser SM
    Nature; 2006 Jun; 441(7094):774-8. PubMed ID: 16760983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope.
    Cabal GG; Genovesio A; Rodriguez-Navarro S; Zimmer C; Gadal O; Lesne A; Buc H; Feuerbach-Fournier F; Olivo-Marin JC; Hurt EC; Nehrbass U
    Nature; 2006 Jun; 441(7094):770-3. PubMed ID: 16760982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of GCR1, the transcriptional activator of glycolytic enzyme genes in the yeast Saccharomyces cerevisiae, is positively autoregulated by Gcr1p.
    Sasaki H; Kishimoto T; Mizuno T; Shinzato T; Uemura H
    Yeast; 2005 Mar; 22(4):305-19. PubMed ID: 15789351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for abundant transcription of non-coding regions in the Saccharomyces cerevisiae genome.
    Havilio M; Levanon EY; Lerman G; Kupiec M; Eisenberg E
    BMC Genomics; 2005 Jun; 6():93. PubMed ID: 15960846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.