These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15176201)

  • 1. Optical influence of ship wakes.
    Zhang X; Lewis M; Bissett WP; Johnson B; Kohler D
    Appl Opt; 2004 May; 43(15):3122-32. PubMed ID: 15176201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method.
    Ma LX; Wang FQ; Wang CA; Wang CC; Tan JY
    Appl Opt; 2015 Nov; 54(33):9863-74. PubMed ID: 26836550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front.
    D'Sa EJ; Miller RL; Del Castillo C
    Appl Opt; 2006 Oct; 45(28):7410-28. PubMed ID: 16983431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.
    He X; Bai Y; Pan D; Tang J; Wang D
    Opt Express; 2012 Aug; 20(18):20754-70. PubMed ID: 23037125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.
    Ma L; Wang F; Wang C; Wang C; Tan J
    Opt Express; 2015 Sep; 23(19):24274-89. PubMed ID: 26406633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of bubbles on scattering of light in the ocean.
    Zhang X; Lewis M; Johnson B
    Appl Opt; 1998 Sep; 37(27):6525-36. PubMed ID: 18286161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.
    Wei J; Lee Z; Ondrusek M; Mannino A; Tzortziou M; Armstrong R
    J Geophys Res Oceans; 2016 Mar; 121(3):1953-1969. PubMed ID: 29201583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New model for subsurface irradiance reflectance in clear and turbid waters.
    Dev PJ; Shanmugam P
    Opt Express; 2014 Apr; 22(8):9548-66. PubMed ID: 24787843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters.
    Gao M; Zhai PW; Franz B; Hu Y; Knobelspiesse K; Werdell PJ; Ibrahim A; Xu F; Cairns B
    Opt Express; 2018 Apr; 26(7):8968-8989. PubMed ID: 29715856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.
    Wang M; Shi W; Jiang L
    Opt Express; 2012 Jan; 20(2):741-53. PubMed ID: 22274419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.
    Wang M; Shi W; Jiang L; Voss K
    Opt Express; 2016 Sep; 24(18):20437-53. PubMed ID: 27607649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability.
    Toole DA; Siegel DA; Menzies DW; Neumann MJ; Smith RC
    Appl Opt; 2000 Jan; 39(3):456-69. PubMed ID: 18337915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New theoretical formulation for the determination of radiance transmittance at the water-air interface.
    Dev PJ; Shanmugam P
    Opt Express; 2017 Oct; 25(22):27086-27103. PubMed ID: 29092190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Out-of-band effects of satellite ocean color sensors.
    Wang M; Naik P; Son S
    Appl Opt; 2016 Mar; 55(9):2312-23. PubMed ID: 27140568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.
    Hlaing S; Gilerson A; Harmel T; Tonizzo A; Weidemann A; Arnone R; Ahmed S
    Appl Opt; 2012 Jan; 51(2):220-37. PubMed ID: 22270520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a reflectance model used in the SeaWiFS ocean color algorithm: implications for chlorophyll concentration retrievals.
    Yan B; Stamnes K; Toratani M; Li W; Stamnes JJ
    Appl Opt; 2002 Oct; 41(30):6243-59. PubMed ID: 12396176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric correction of satellite ocean color imagery: the black pixel assumption.
    Siegel DA; Wang M; Maritorena S; Robinson W
    Appl Opt; 2000 Jul; 39(21):3582-91. PubMed ID: 18349929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurements.
    Chang GC; Gould RW
    Opt Express; 2006 Oct; 14(22):10149-63. PubMed ID: 19529411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.