These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15176750)

  • 1. Biodegradation of C5+ hydrocarbons by a mixed bacterial consortium from a C(5+)-contaminated site.
    Greene EA; Voordouw G
    Environ Technol; 2004 Mar; 25(3):355-63. PubMed ID: 15176750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons.
    Greene EA; Kay JG; Jaber K; Stehmeier LG; Voordouw G
    Appl Environ Microbiol; 2000 Dec; 66(12):5282-9. PubMed ID: 11097903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site.
    Díaz-Ramírez IJ; Ramírez-Saad H; Gutiérrez-Rojas M; Favela-Torres E
    Can J Microbiol; 2003 Dec; 49(12):755-61. PubMed ID: 15162200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation.
    Richnow HH; Annweiler E; Michaelis W; Meckenstock RU
    J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial community composition at an ethane pyrolysis plant site at different hydrocarbon inputs.
    Greene EA; Kay JG; Stehmeier LG; Voordouw G
    FEMS Microbiol Ecol; 2002 Jun; 40(3):233-41. PubMed ID: 19709231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.
    Deeb RA; Alvarez-Cohen L
    Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities.
    Gülensoy N; Alvarez PJ
    Biodegradation; 1999; 10(5):331-40. PubMed ID: 10870549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants.
    Wang X; Deshusses MA
    Biodegradation; 2007 Feb; 18(1):37-50. PubMed ID: 16733621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter.
    Strauss JM; Riedel KJ; Du Plessis CA
    Appl Microbiol Biotechnol; 2004 Jun; 64(6):855-61. PubMed ID: 14666388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium.
    Mukherjee AK; Bordoloi NK
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3380-8. PubMed ID: 22528987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of aromatic compounds and TCE by a filamentous bacteria-dominated consortium.
    Bielefeldt AR; Stensel HD
    Biodegradation; 1999 Feb; 10(1):1-13. PubMed ID: 10423836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils.
    Taki H; Syutsubo K; Mattison RG; Harayama S
    Biodegradation; 2007 Feb; 18(1):17-26. PubMed ID: 16485082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biodegradation of aromatic hydrocarbons and dynamics of microbe growth in soils contaminated with mineral oil].
    Song XY; Song YF; Sun TH; Zhou QX
    Huan Jing Ke Xue; 2004 May; 25(3):115-9. PubMed ID: 15327267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring aromatic hydrocarbon biodegradation by functional marker genes.
    Nyyssönen M; Piskonen R; Itävaara M
    Environ Pollut; 2008 Jul; 154(2):192-202. PubMed ID: 18037200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of environmental factors on bacterial quorum sensing.
    Ayaz E; Gothalwal R
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):46-50. PubMed ID: 25535712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorinated waste and firefighting activities: biodegradation of hydrocarbons from petrochemical refinery soil co-contaminated with halogenated foams.
    Montagnolli RN; Lopes PRM; Bidoia ED
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36002-36013. PubMed ID: 29484621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of volatile hydrocarbons from steam-classified solid waste by a mixture of aromatic hydrocarbon-degrading bacteria.
    Leahy JG; Tracy KD; Eley MH
    Biotechnol Lett; 2003 Mar; 25(6):479-83. PubMed ID: 12882275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains.
    Singh B; Bhattacharya A; Channashettar VA; Jeyaseelan CP; Gupta S; Sarma PM; Mandal AK; Lal B
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):257-62. PubMed ID: 22669336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate interactions during aerobic biodegradation of benzene.
    Arvin E; Jensen BK; Gundersen AT
    Appl Environ Microbiol; 1989 Dec; 55(12):3221-5. PubMed ID: 2619308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.