These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 15176869)
1. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Ito J; Fujita Y; Ueda M; Fukuda H; Kondo A Biotechnol Prog; 2004; 20(3):688-91. PubMed ID: 15176869 [TBL] [Abstract][Full Text] [Related]
2. Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. Miettinen-Oinonen A; Paloheimo M; Lantto R; Suominen P J Biotechnol; 2005 Mar; 116(3):305-17. PubMed ID: 15707691 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of cellulase activity by clones selected from the combinatorial library of the cellulose-binding domain by cell surface engineering. Fukuda T; Ishikawa T; Ogawa M; Shiraga S; Kato M; Suye S; Ueda M Biotechnol Prog; 2006; 22(4):933-8. PubMed ID: 16889365 [TBL] [Abstract][Full Text] [Related]
4. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Baek SH; Kim S; Lee K; Lee JK; Hahn JS Enzyme Microb Technol; 2012 Dec; 51(6-7):366-72. PubMed ID: 23040393 [TBL] [Abstract][Full Text] [Related]
5. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. du Plessis L; Rose SH; van Zyl WH Appl Microbiol Biotechnol; 2010 May; 86(5):1503-11. PubMed ID: 20041241 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic polymerization behavior using cellulose-binding domain deficient endoglucanase II. Nakamura I; Yoneda H; Maeda T; Makino A; Ohmae M; Sugiyama J; Ueda M; Kobayashi S; Kimura S Macromol Biosci; 2005 Jul; 5(7):623-8. PubMed ID: 15988789 [TBL] [Abstract][Full Text] [Related]
7. Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Fukuda T; Kato-Murai M; Kuroda K; Ueda M; Suye S Appl Microbiol Biotechnol; 2008 Jan; 77(6):1225-32. PubMed ID: 18040681 [TBL] [Abstract][Full Text] [Related]
8. Ethanol production from cellulosic materials using cellulase-expressing yeast. Yanase S; Yamada R; Kaneko S; Noda H; Hasunuma T; Tanaka T; Ogino C; Fukuda H; Kondo A Biotechnol J; 2010 May; 5(5):449-55. PubMed ID: 20349451 [TBL] [Abstract][Full Text] [Related]
9. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Fujita Y; Takahashi S; Ueda M; Tanaka A; Okada H; Morikawa Y; Kawaguchi T; Arai M; Fukuda H; Kondo A Appl Environ Microbiol; 2002 Oct; 68(10):5136-41. PubMed ID: 12324364 [TBL] [Abstract][Full Text] [Related]
10. [Display cellulolytic enzymes on Saccharomyces cerevisiae cell surface by using Flo1p as an anchor protein for cellulosic ethanol production]. Mo C; Yang Y; Chen N; Yang X; Tian S Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1401-13. PubMed ID: 25720155 [TBL] [Abstract][Full Text] [Related]
11. Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Thongekkaew J; Ikeda H; Masaki K; Iefuji H Enzyme Microb Technol; 2013 Apr; 52(4-5):241-6. PubMed ID: 23540925 [TBL] [Abstract][Full Text] [Related]
12. Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. van Wyk N; den Haan R; van Zyl WH Appl Microbiol Biotechnol; 2010 Aug; 87(5):1813-20. PubMed ID: 20449742 [TBL] [Abstract][Full Text] [Related]
13. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Fujita Y; Ito J; Ueda M; Fukuda H; Kondo A Appl Environ Microbiol; 2004 Feb; 70(2):1207-12. PubMed ID: 14766607 [TBL] [Abstract][Full Text] [Related]
14. Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Reinikainen T; Teleman O; Teeri TT Proteins; 1995 Aug; 22(4):392-403. PubMed ID: 7479712 [TBL] [Abstract][Full Text] [Related]
15. Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant trichoderma reesei strains devoid of major endoglucanase genes. Koivula A; Lappalainen A; Virtanen S; Mäntylä AL; Suominen P; Teeri TT Protein Expr Purif; 1996 Dec; 8(4):399-400. PubMed ID: 8959766 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic polymerization catalyzed by immobilized endoglucanase on gold. Nakamura I; Horikawa Y; Makino A; Sugiyama J; Kimura S Biomacromolecules; 2011 Mar; 12(3):785-90. PubMed ID: 21261301 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei. Mattinen ML; Kontteli M; Kerovuo J; Linder M; Annila A; Lindeberg G; Reinikainen T; Drakenberg T Protein Sci; 1997 Feb; 6(2):294-303. PubMed ID: 9041630 [TBL] [Abstract][Full Text] [Related]
18. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Linder M; Mattinen ML; Kontteli M; Lindeberg G; Ståhlberg J; Drakenberg T; Reinikainen T; Pettersson G; Annila A Protein Sci; 1995 Jun; 4(6):1056-64. PubMed ID: 7549870 [TBL] [Abstract][Full Text] [Related]
19. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase. Saitoh S; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic activities of novel mutant endoglucanases carrying sequential active sites. Nakamura I; Makino A; Sugiyama J; Ohmae M; Kimura S Int J Biol Macromol; 2008 Oct; 43(3):226-31. PubMed ID: 18599118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]