BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 15177044)

  • 21. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic processing of radiation-induced free radical damage in DNA.
    Wallace SS
    Radiat Res; 1998 Nov; 150(5 Suppl):S60-79. PubMed ID: 9806610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. APE1-dependent repair of DNA single-strand breaks containing 3'-end 8-oxoguanine.
    Parsons JL; Dianova II; Dianov GL
    Nucleic Acids Res; 2005; 33(7):2204-9. PubMed ID: 15831793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site.
    Pearson CG; Shikazono N; Thacker J; O'Neill P
    Nucleic Acids Res; 2004; 32(1):263-70. PubMed ID: 14715924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulation of clustered DNA damage sites containing 8-oxoguanine and abasic site.
    Fujimoto H; Pinak M; Nemoto T; O'Neill P; Kume E; Saito K; Maekawa H
    J Comput Chem; 2005 Jun; 26(8):788-98. PubMed ID: 15806602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein.
    David-Cordonnier MH; Boiteux S; O'Neill P
    Nucleic Acids Res; 2001 Mar; 29(5):1107-13. PubMed ID: 11222760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing of model single-strand breaks in phi X-174 RF transfecting DNA by Escherichia coli.
    Kow YW; Faundez G; Melamede RJ; Wallace SS
    Radiat Res; 1991 Jun; 126(3):357-66. PubMed ID: 1852023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways.
    Fortini P; Dogliotti E
    DNA Repair (Amst); 2007 Apr; 6(4):398-409. PubMed ID: 17129767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma-irradiated human cells.
    Yang N; Chaudhry MA; Wallace SS
    DNA Repair (Amst); 2006 Jan; 5(1):43-51. PubMed ID: 16111924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair.
    Campalans A; Marsin S; Nakabeppu Y; O'connor TR; Boiteux S; Radicella JP
    DNA Repair (Amst); 2005 Jul; 4(7):826-35. PubMed ID: 15927541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. XRCC1 and DNA polymerase beta interaction contributes to cellular alkylating-agent resistance and single-strand break repair.
    Wong HK; Wilson DM
    J Cell Biochem; 2005 Jul; 95(4):794-804. PubMed ID: 15838887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA polymerase beta promotes recruitment of DNA ligase III alpha-XRCC1 to sites of base excision repair.
    Parsons JL; Dianova II; Allinson SL; Dianov GL
    Biochemistry; 2005 Aug; 44(31):10613-9. PubMed ID: 16060670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Base-excision repair of oxidative DNA damage by DNA glycosylases.
    Dizdaroglu M
    Mutat Res; 2005 Dec; 591(1-2):45-59. PubMed ID: 16054172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1.
    Marsin S; Vidal AE; Sossou M; Ménissier-de Murcia J; Le Page F; Boiteux S; de Murcia G; Radicella JP
    J Biol Chem; 2003 Nov; 278(45):44068-74. PubMed ID: 12933815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognition and kinetics for excision of a base lesion within clustered DNA damage by the Escherichia coli proteins Fpg and Nth.
    David-Cordonnier MH; Laval J; O'Neill P
    Biochemistry; 2001 May; 40(19):5738-46. PubMed ID: 11341839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing of a complex multiply damaged DNA site by human cell extracts and purified repair proteins.
    Eot-Houllier G; Eon-Marchais S; Gasparutto D; Sage E
    Nucleic Acids Res; 2005; 33(1):260-71. PubMed ID: 15647508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short-patch single-strand break repair in ataxia oculomotor apraxia-1.
    Reynolds JJ; El-Khamisy SF; Caldecott KW
    Biochem Soc Trans; 2009 Jun; 37(Pt 3):577-81. PubMed ID: 19442253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins.
    Pascucci B; Maga G; Hübscher U; Bjoras M; Seeberg E; Hickson ID; Villani G; Giordano C; Cellai L; Dogliotti E
    Nucleic Acids Res; 2002 May; 30(10):2124-30. PubMed ID: 12000832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiosensitization by a dominant negative to DNA polymerase beta is DNA polymerase beta-independent and XRCC1-dependent.
    Neijenhuis S; Begg AC; Vens C
    Radiother Oncol; 2005 Aug; 76(2):123-8. PubMed ID: 16024118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.