BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15177175)

  • 1. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning.
    Bradley AJ; Scott MD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 807(1):163-8. PubMed ID: 15177175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune complex binding by immunocamouflaged [poly(ethylene glycol)-grafted] erythrocytes.
    Bradley AJ; Scott MD
    Am J Hematol; 2007 Nov; 82(11):970-5. PubMed ID: 17654505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter.
    Bradley AJ; Murad KL; Regan KL; Scott MD
    Biochim Biophys Acta; 2002 Apr; 1561(2):147-58. PubMed ID: 11997115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-mediated immunocamouflage of red blood cells: effects of polymer size on antigenic and immunogenic recognition of allogeneic donor blood cells.
    Wang D; Kyluik DL; Murad KL; Toyofuku WM; Scott MD
    Sci China Life Sci; 2011 Jul; 54(7):589-98. PubMed ID: 21701803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative efficacy of blood cell immunocamouflage by membrane grafting of methoxypoly(ethylene glycol) and polyethyloxazoline.
    Kyluik-Price DL; Li L; Scott MD
    Biomaterials; 2014 Jan; 35(1):412-22. PubMed ID: 24074839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential utility of methoxypoly(ethylene glycol)-mediated prevention of rhesus blood group antigen RhD recognition in transfusion medicine.
    Wang D; Toyofuku WM; Scott MD
    Biomaterials; 2012 Apr; 33(10):3002-12. PubMed ID: 22264524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the aggregation behaviour of pegylated human red blood cells with the Zeta sedimentation technique.
    Jovtchev S; Stoeff S; Arnold K; Zschörnig O
    Clin Hemorheol Microcirc; 2008; 39(1-4):229-33. PubMed ID: 18503130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG).
    Le Y; Scott MD
    Acta Biomater; 2010 Jul; 6(7):2631-41. PubMed ID: 20109585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to optimize PEG-coating of red blood cells.
    Hashemi-Najafabadi S; Vasheghani-Farahani E; Shojaosadati SA; Rasaee MJ; Armstrong JK; Moin M; Pourpak Z
    Bioconjug Chem; 2006; 17(5):1288-93. PubMed ID: 16984140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunogenicity of murine mPEG-red blood cells and the risk of anti-PEG antibodies in human blood donors.
    Le Y; Toyofuku WM; Scott MD
    Exp Hematol; 2017 Mar; 47():36-47.e2. PubMed ID: 27864153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased immunorejection in unmatched blood transfusions by attachment of methoxypolyethylene glycol on human red blood cells and the effect on D antigen.
    Tan Y; Qiu Y; Xu H; Ji S; Li S; Gong F; Zhang Y
    Transfusion; 2006 Dec; 46(12):2122-7. PubMed ID: 17176324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly(ethylene glycol).
    Murad KL; Mahany KL; Brugnara C; Kuypers FA; Eaton JW; Scott MD
    Blood; 1999 Mar; 93(6):2121-7. PubMed ID: 10068687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of polymer and linker chemistries on the efficacy of immunocamouflage of murine leukocytes.
    Chen AM; Scott MD
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(3):305-22. PubMed ID: 16809132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune recognition of exposed xenoantigens on the surface of PEGylated bovine red blood cells.
    Gundersen SI; Kennedy MS; Palmer AF
    Biotechnol Bioeng; 2008 Oct; 101(2):337-44. PubMed ID: 18454498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R; Constantinescu I; Rossi NA; Medvedev N; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of prion proteins via covalent grafting with methoxypoly(ethylene glycol).
    Scott MD
    Med Hypotheses; 2006; 66(2):387-93. PubMed ID: 16242248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the red cell: pegylation of other blood cells and tissues.
    Scott MD; Chen AM
    Transfus Clin Biol; 2004 Feb; 11(1):40-6. PubMed ID: 14980548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of deformability, viscosity, and aggregation of mPEG-modified erythrocytes.
    Leach JK; Hinman A; O'Rear EA
    Biomed Sci Instrum; 2002; 38():333-8. PubMed ID: 12085627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of molecular mass of methoxypoly(ethylene glycol) activated with succinimidyl carbonate on camouflaging pancreatic islets.
    Barani L; Vasheghani-Farahani E; Lazarjani HA; Hashemi-Najafabadi S; Atyabi F
    Biotechnol Appl Biochem; 2010 Sep; 57(1):25-30. PubMed ID: 20731621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocamouflage of latex surfaces by grafted methoxypoly(ethylene glycol) (mPEG): proteomic analysis of plasma protein adsorption.
    Le Y; Li L; Wang D; Scott MD
    Sci China Life Sci; 2012 Mar; 55(3):191-201. PubMed ID: 22527515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.