These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15177733)

  • 1. Soil vapor extraction of chlorinated solvents at an industrial site in Brazil.
    Nobre MM; Nobre RC
    J Hazard Mater; 2004 Jul; 110(1-3):119-27. PubMed ID: 15177733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.
    Yoon H; Oostrom M; Wietsma TW; Werth CJ; Valocchi AJ
    J Contam Hydrol; 2009 Oct; 109(1-4):1-13. PubMed ID: 19720427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of pneumatic soil vapor extraction.
    Høier CK; Sonnenborg TO; Jensen KH; Kortegaard C; Nasser MM
    J Contam Hydrol; 2007 Jan; 89(1-2):29-47. PubMed ID: 16987566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of interfacial mass transfer in water-unsaturated soils during vapor extraction.
    Hoeg S; Schöler HF; Warnatz J
    J Contam Hydrol; 2004 Oct; 74(1-4):163-95. PubMed ID: 15358492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field vapor extraction test and long-term monitoring at a PCE contaminated site.
    Chai JC; Miura N
    J Hazard Mater; 2004 Jul; 110(1-3):85-92. PubMed ID: 15177729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction.
    Qin CY; Zhao YS; Zheng W; Li YS
    J Hazard Mater; 2010 Apr; 176(1-3):294-9. PubMed ID: 19954881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ.
    Brusseau ML; Nelson NT; Zhang Z; Blue JE; Rohrer J; Allen T
    J Contam Hydrol; 2007 Feb; 90(1-2):21-40. PubMed ID: 17049404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent extraction of chlorinated compounds from soils and hydrodechlorination of the extract phase.
    Murena F; Gioia F
    J Hazard Mater; 2009 Mar; 162(2-3):661-7. PubMed ID: 18602750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of soils combining soil vapor extraction and bioremediation: benzene.
    Soares AA; Albergaria JT; Domingues VF; Alvim-Ferraz Mda C; Delerue-Matos C
    Chemosphere; 2010 Aug; 80(8):823-8. PubMed ID: 20605039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of NAPL entrapment conditions on air sparging remediation efficiency.
    Waduge WA; Soga K; Kawabata J
    J Hazard Mater; 2004 Jul; 110(1-3):173-83. PubMed ID: 15177738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining steam injection with hydraulic fracturing for the in situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel.
    Nilsson B; Tzovolou D; Jeczalik M; Kasela T; Slack W; Klint KE; Haeseler F; Tsakiroglou CD
    J Environ Manage; 2011 Mar; 92(3):695-707. PubMed ID: 21030134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory tests for reactive barrier design.
    Gusmão AD; de Campos TM; Nobre Mde M; Vargas Edo A
    J Hazard Mater; 2004 Jul; 110(1-3):105-12. PubMed ID: 15177731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media.
    Chu Y; Werth CJ; Valocchi AJ; Yoon H; Webb AG
    J Contam Hydrol; 2004 Sep; 73(1-4):15-37. PubMed ID: 15336788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Basic principle and impact factors of soil vapor extraction (SVE) technology for remediation of contaminated soils by volatile and semivolatile organics].
    Liu SQ; Jiang L; Huang Z; Li YX; Lin CY
    Huan Jing Ke Xue; 2011 Mar; 32(3):825-33. PubMed ID: 21634184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality.
    Carroll KC; Oostrom M; Truex MJ; Rohay VJ; Brusseau ML
    J Contam Hydrol; 2012 Feb; 128(1-4):71-82. PubMed ID: 22192346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of in situ steam formation by radio frequency heating on thermodesorption of hydrocarbons from contaminated soil.
    Roland U; Bergmann S; Holzer F; Kopinke FD
    Environ Sci Technol; 2010 Dec; 44(24):9502-8. PubMed ID: 21105642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of skin and hydraulic fractures on SVE wells.
    Bradner GC; Murdoch LC
    J Contam Hydrol; 2005 May; 77(4):271-97. PubMed ID: 15854720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.