These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1517777)

  • 1. PLS modelling of structure-activity relationships of catechol O-methyltransferase inhibitors.
    Lotta T; Taskinen J; Bäckström R; Nissinen E
    J Comput Aided Mol Des; 1992 Jun; 6(3):253-72. PubMed ID: 1517777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models.
    Taskinen J; Ethell BT; Pihlavisto P; Hood AM; Burchell B; Coughtrie MW
    Drug Metab Dispos; 2003 Sep; 31(9):1187-97. PubMed ID: 12920175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase.
    Lautala P; Ulmanen I; Taskinen J
    Mol Pharmacol; 2001 Feb; 59(2):393-402. PubMed ID: 11160877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structure-activity relationship study of catechol-O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods.
    Tervo AJ; Nyrönen TH; Rönkkö T; Poso A
    J Comput Aided Mol Des; 2003 Dec; 17(12):797-810. PubMed ID: 15124929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catechol O-methyltransferase. 8. Structure-activity relationships for inhibtion by 8-hydroxyquinolines.
    Borchardt RT; Thakker DR; Warner VD; Mirth DB; Sane JN
    J Med Chem; 1976 Apr; 19(4):558-60. PubMed ID: 817025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based design, synthesis, and in vitro evaluation of bisubstrate inhibitors for catechol O-methyltransferase (COMT).
    Masjost B; Ballmer P; Borroni E; Zürcher G; Winkler FK; Jakob-Roetne R; Diederich F
    Chemistry; 2000 Mar; 6(6):971-82. PubMed ID: 10785817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids.
    Borchardt RT; Huber JA
    J Med Chem; 1975 Jan; 18(1):120-2. PubMed ID: 1109569
    [No Abstract]   [Full Text] [Related]  

  • 8. Quantitative structure-activity relationship for the cleavage of C3/C4-substituted catechols by a prototypal extradiol catechol dioxygenase with broad substrate specificity.
    Ishida T; Tanaka H; Horiike K
    J Biochem; 2004 Jun; 135(6):721-30. PubMed ID: 15213248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catechol O-methyltransferase. 10. 5-Substituted 3-hydroxy-4-methoxybenzoic acids (isovanillic acids) and 5-substituted 3-hydroxy-4-methoxybenzaldehydes (isovanillins) as potential inhibitors.
    Borchardt RT; Huber JA; Houston M
    J Med Chem; 1982 Mar; 25(3):258-63. PubMed ID: 7069704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of some novel potent and selective catechol O-methyltransferase inhibitors.
    Bäckström R; Honkanen E; Pippuri A; Kairisalo P; Pystynen J; Heinola K; Nissinen E; Linden IB; Männistö PT; Kaakkola S
    J Med Chem; 1989 Apr; 32(4):841-6. PubMed ID: 2704029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydroxynitrobenzaldehydes and hydroxymethoxynitrobenzaldehydes: synthesis and biological activity as catechol-O-methyltransferase inhibitors.
    Pérez RA; Fernández-Alvarez E; Nieto O; Piedrafita FJ
    J Med Chem; 1992 Nov; 35(24):4584-8. PubMed ID: 1469689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR by LFER model of HIV protease inhibitor mannitol derivatives using FA-MLR, PCRA, and PLS techniques.
    Leonard JT; Roy K
    Bioorg Med Chem; 2006 Feb; 14(4):1039-46. PubMed ID: 16213730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselectivity in the methylation of the catecholic phase I metabolites of methylenedioxy designer drugs and their capability to inhibit catechol-O-methyltransferase-catalyzed dopamine 3-methylation.
    Meyer MR; Maurer HH
    Chem Res Toxicol; 2009 Jun; 22(6):1205-11. PubMed ID: 19462939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-activity relationship of catechol derivatives inhibiting 5-lipoxygenase.
    Naito Y; Sugiura M; Yamaura Y; Fukaya C; Yokoyama K; Nakagawa Y; Ikeda T; Senda M; Fujita T
    Chem Pharm Bull (Tokyo); 1991 Jul; 39(7):1736-45. PubMed ID: 1777927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of ortho- and meta-nitrated inhibitors of catechol-O-methyltransferase: interactions with the active site and regioselectivity of O-methylation.
    Palma PN; Rodrigues ML; Archer M; Bonifácio MJ; Loureiro AI; Learmonth DA; Carrondo MA; Soares-da-Silva P
    Mol Pharmacol; 2006 Jul; 70(1):143-53. PubMed ID: 16618795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of bridged catechol-homocysteine derivatives as potential inhibitors of catechol O-methyltransferase.
    Lever OW; Hyman C; White HL
    J Pharm Sci; 1984 Sep; 73(9):1241-4. PubMed ID: 6491941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituent effects on O--H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants.
    Zhang HY; Sun YM; Wang XL
    Chemistry; 2003 Jan; 9(2):502-8. PubMed ID: 12532299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines--models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results.
    Neuvonen H; Neuvonen K; Fülöp F
    J Org Chem; 2006 Apr; 71(8):3141-8. PubMed ID: 16599611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of catechol-O-methyltransferase activity by two novel disubstituted catechols in the rat.
    Nissinen E; Lindén IB; Schultz E; Kaakkola S; Männistö PT; Pohto P
    Eur J Pharmacol; 1988 Aug; 153(2-3):263-9. PubMed ID: 3181288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucuronidation of entacapone, nitecapone, tolcapone, and some other nitrocatechols by rat liver microsomes.
    Lautala P; Kivimaa M; Salomies H; Elovaara E; Taskinen J
    Pharm Res; 1997 Oct; 14(10):1444-8. PubMed ID: 9358559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.