BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15178045)

  • 1. Evaluation of fixed wavelength fluorescence and synchronous fluorescence spectrophotometry as a biomonitoring tool of environmental contamination.
    Dissanayake A; Galloway TS
    Mar Environ Res; 2004; 58(2-5):281-5. PubMed ID: 15178045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring PAH contamination in the field (South west Iberian Peninsula): biomonitoring using fluorescence spectrophotometry and physiological assessments in the shore crab Carcinus maenas (L.) (Crustacea: Decapoda).
    Dissanayake A; Bamber SD
    Mar Environ Res; 2010 Jul; 70(1):65-72. PubMed ID: 20347130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid assessment of polycyclic aromatic hydrocarbon (PAH) exposure in decapod crustaceans by fluorimetric analysis of urine and haemolymph.
    Watson GM; Andersen OK; Galloway TS; Depledge MH
    Aquat Toxicol; 2004 Apr; 67(2):127-42. PubMed ID: 15003698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive assessment of polycyclic aromatic hydrocarbon (PAH) exposure by fluorimetric analysis of crab urine.
    Koenig S; Savage C; Kim JP
    Mar Pollut Bull; 2008 Dec; 56(12):2003-8. PubMed ID: 18845307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting a field gradient of PAH exposure in decapod crustacea using a novel urinary biomarker.
    Watson GM; Andersen OK; Depledge MH; Galloway TS
    Mar Environ Res; 2004; 58(2-5):257-61. PubMed ID: 15178041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening pyrene metabolites in the hemolymph of dungeness crabs (Cancer magister) with synchronous fluorescence spectrometry: method development and application.
    Eickhoff CV; Gobas FA; Law FC
    Environ Toxicol Chem; 2003 Jan; 22(1):59-66. PubMed ID: 12503747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycyclic aromatic hydrocarbon (PAH) metabolites in marine fishes as a specific biomarker to indicate PAH pollution in the marine coastal environment.
    Wang XH; Hong HS; Mu JL; Lin JQ; Wang SH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(3):219-26. PubMed ID: 18205051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of fixed wavelength fluorescence results for biliary metabolites of polycyclic aromatic hydrocarbons formed in Atlantic cod (Gadus morhua).
    Pampanin DM; Kemppainen EK; Skogland K; Jørgensen KB; Sydnes MO
    Chemosphere; 2016 Feb; 144():1372-6. PubMed ID: 26492423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High matrix interference affecting detection of PAH metabolites in bile of Atlantic hagfish (Myxine glutinosa) used for biomonitoring of deep-water oil production.
    Sundt RC; Beyer J; Vingen S; Sydnes MO
    Mar Environ Res; 2011 Jun; 71(5):369-74. PubMed ID: 21605895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of metabolic pathways to polycyclic aromatic compounds in flounder following oil spill in the Baltic Sea near the Estonian coast.
    Kreitsberg R; Zemit I; Freiberg R; Tambets M; Tuvikene A
    Aquat Toxicol; 2010 Sep; 99(4):473-8. PubMed ID: 20663574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-beta-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS).
    Hua G; Broderick J; Semple KT; Killham K; Singleton I
    Environ Pollut; 2007 Jul; 148(1):176-81. PubMed ID: 17240015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of bile fluorescence patterns in a tropical fish, Nile tilapia (Oreochromis niloticus) exposed to naphthalene, phenanthrene, pyrene and chrysene using fixed wavelength fluorescence and synchronous fluorescence spectrometry.
    Pathiratne A; Hemachandra CK; Pathiratne KA
    Bull Environ Contam Toxicol; 2010 May; 84(5):554-8. PubMed ID: 20411241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: comparison with HPLC-fluorescent detection.
    Lin EL; Cormier SM; Torsella JA
    Ecotoxicol Environ Saf; 1996 Oct; 35(1):16-23. PubMed ID: 8930501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Ucides cordatus as a bioindicator of oil contamination and bioavailability in mangroves by evaluating sediment and crab PAH records.
    Nudi AH; de Luca Rebello Wagener A; Francioni E; de Lemos Scofield A; Sette CB; Veiga A
    Environ Int; 2007 Apr; 33(3):315-27. PubMed ID: 17157381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urinary PAH metabolites as biomarkers of exposure in aquatic environments.
    Fillmann G; Watson GM; Howsam M; Francioni E; Depledge MH; Readman JW
    Environ Sci Technol; 2004 May; 38(9):2649-56. PubMed ID: 15180061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional status of Carcinus maenas (Crustacea: Decapoda) influences susceptibility to contaminant exposure.
    Dissanayake A; Galloway TS; Jones MB
    Aquat Toxicol; 2008 Aug; 89(1):40-6. PubMed ID: 18606465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of polycyclic aromatic hydrocarbons in dungeness crabs (Cancer magister) near an aluminum smelter in Kitimat Arm, British Columbia, Canada.
    Eickhoff CV; He SX; Gobas FA; Law FC
    Environ Toxicol Chem; 2003 Jan; 22(1):50-8. PubMed ID: 12503746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two novel non-destructive biomarkers to assess PAH-induced oxidative stress and porphyrinogenic effects in crabs.
    Koenig S; Savage C; Kim JP
    Biomarkers; 2009 Nov; 14(7):452-64. PubMed ID: 19863183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of PAHs in the Biobio river (Chile): MFO activity and biliary fluorescence in juvenile Oncorhynchus mykiss.
    Barra R; Sanchez-Hernandez JC; Orrego R; Parra O; Gavilan JF
    Chemosphere; 2001 Nov; 45(4-5):439-44. PubMed ID: 11680739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea.
    Vuorinen PJ; Keinänen M; Vuontisjärvi H; Barsiene J; Broeg K; Förlin L; Gercken J; Kopecka J; Köhler A; Parkkonen J; Pempkowiak J; Schiedek D
    Mar Pollut Bull; 2006; 53(8-9):479-87. PubMed ID: 16406005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.