BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 15178154)

  • 1. CCK-8 and PGE1: central effects on circadian body temperature and activity rhythms in rats.
    Szelényi Z; Hummel Z; Székely M; Pétervári E
    Physiol Behav; 2004 Jun; 81(4):615-21. PubMed ID: 15178154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The central thermoregulatory action of cholecystokinin-8 and prostaglandin E1].
    Szelényi Z; Székely M; Romanovskiĭ AA
    Fiziol Zh SSSR Im I M Sechenova; 1992 Apr; 78(4):94-101. PubMed ID: 1334868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholecystokinin octapeptide (CCK-8) injected into a cerebral ventricle induces a fever-like thermoregulatory response mediated by type B CCK-receptors in the rat.
    Szelényi Z; Barthó L; Székely M; Romanovsky AA
    Brain Res; 1994 Feb; 638(1-2):69-77. PubMed ID: 8199877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute, subacute and chronic effects of central neuropeptide Y on energy balance in rats.
    Székely M; Pétervári E; Pákai E; Hummel Z; Szelényi Z
    Neuropeptides; 2005 Apr; 39(2):103-15. PubMed ID: 15752544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diazepam affects both level and amplitude of rat locomotor activity rhythm but has no effect on core body temperature.
    Djeridane Y; Lemmer B; Touitou Y
    Chronobiol Int; 2005; 22(6):975-85. PubMed ID: 16393702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian disruption of body core temperature and rest-activity rhythms after general (propofol) anesthesia in rats.
    Dispersyn G; Pain L; Touitou Y
    Anesthesiology; 2009 Jun; 110(6):1305-15. PubMed ID: 19417612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the transient receptor potential vanilloid 1 antagonist A-425619 on body temperature and thermoregulation in the rat.
    Mills C; McMackin M; Jaffe R; Yu J; Zininberg E; Slee D; Gogas K; Bradbury M
    Neuroscience; 2008 Sep; 156(1):165-74. PubMed ID: 18706981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroconvulsive shock alters the rat overt rhythms of motor activity and temperature without altering the circadian pacemaker.
    Anglès-Pujolràs M; Díez-Noguera A; Soria V; Urretavizcaya M; Menchón JM; Cambras T
    Behav Brain Res; 2009 Jan; 196(1):37-43. PubMed ID: 18706453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to T-cycles of 22 and 23 h during lactation modifies the later dissociation of motor activity and temperature circadian rhythms in rats.
    Anglès-Pujolràs M; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(6):1049-64. PubMed ID: 18075798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vagotomy does not affect thermal responsiveness to intrabrain prostaglandin E2 and cholecystokinin octapeptide.
    Sugimoto N; Simons CT; Romanovsky AA
    Brain Res; 1999 Oct; 844(1-2):157-63. PubMed ID: 10536272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pregnancy on the febrile response to ICV administration of PGE1 in rats studied in a thermocline.
    Eliason HL; Fewell JE
    J Appl Physiol (1985); 1997 May; 82(5):1453-8. PubMed ID: 9134892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of rat activity following exposure to hyperdynamic fields.
    Fuller CA; Ishihama LM; Murakami DM
    Physiologist; 1993; 36(1 Suppl):S121-2. PubMed ID: 11537417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The behavioral thermoregulatory response of febrile female rats is not attenuated by vagotomy.
    Turek VF; Olster DH; Ettenberg A; Carlisle HJ
    Pharmacol Biochem Behav; 2005 Jan; 80(1):115-21. PubMed ID: 15652387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway.
    Keringer P; Furedi N; Gaszner B; Miko A; Pakai E; Fekete K; Olah E; Kelava L; Romanovsky AA; Rumbus Z; Garami A
    Am J Physiol Endocrinol Metab; 2022 Jan; 322(1):E10-E23. PubMed ID: 34779255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in brain temperature and thermoregulation produced by destruction of medial septal neurons in rats.
    Srividya R; Mallick HN; Kumar VM
    Brain Res Bull; 2005 Jul; 66(2):143-8. PubMed ID: 15982531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA ("Ecstasy") and MDA ("Love").
    McNamara R; Kerans A; O'Neill B; Harkin A
    Neuropharmacology; 2006 Jan; 50(1):69-80. PubMed ID: 16188283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian body temperature rhythm in the elderly: effect of single daily melatonin dosing.
    Gubin DG; Gubin GD; Waterhouse J; Weinert D
    Chronobiol Int; 2006; 23(3):639-58. PubMed ID: 16753947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.
    Yee N; Plassmann K; Fuchs E
    Physiol Behav; 2011 Sep; 104(3):408-16. PubMed ID: 21557956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothermia and deranged circadian rhythm of core body temperature in nickel chloride-treated rats.
    Hopfer SM; Sunderman FW
    Res Commun Chem Pathol Pharmacol; 1988 Dec; 62(3):495-505. PubMed ID: 3222527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of superior cervical ganglionectomy on body temperature and on the lipopolysaccharide-induced febrile response in rats.
    Romeo HE; Tio DL; Taylor AN
    J Neuroimmunol; 2009 Apr; 209(1-2):81-6. PubMed ID: 19251325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.