These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15178193)

  • 1. Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space.
    Wiback SJ; Famili I; Greenberg HJ; Palsson BØ
    J Theor Biol; 2004 Jun; 228(4):437-47. PubMed ID: 15178193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo sampling and principal component analysis of flux distributions yield topological and modular information on metabolic networks.
    Sariyar B; Perk S; Akman U; Hortaçsu A
    J Theor Biol; 2006 Sep; 242(2):389-400. PubMed ID: 16860341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems.
    Schilling CH; Edwards JS; Letscher D; Palsson BØ
    Biotechnol Bioeng; 2000-2001; 71(4):286-306. PubMed ID: 11291038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum.
    Wiback SJ; Mahadevan R; Palsson BØ
    Biotechnol Bioeng; 2004 May; 86(3):317-31. PubMed ID: 15083512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the size of the solution space of metabolic networks.
    Braunstein A; Mulet R; Pagnani A
    BMC Bioinformatics; 2008 May; 9():240. PubMed ID: 18489757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes.
    Schwartz JM; Kanehisa M
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii204-5. PubMed ID: 16204104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies.
    Price ND; Schellenberger J; Palsson BO
    Biophys J; 2004 Oct; 87(4):2172-86. PubMed ID: 15454420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy.
    Papin JA; Price ND; Edwards JS; Palsson B BØ
    J Theor Biol; 2002 Mar; 215(1):67-82. PubMed ID: 12051985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective.
    Schilling CH; Letscher D; Palsson BO
    J Theor Biol; 2000 Apr; 203(3):229-48. PubMed ID: 10716907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interval approach for dealing with flux distributions and elementary modes activity patterns.
    Llaneras F; Picó J
    J Theor Biol; 2007 May; 246(2):290-308. PubMed ID: 17292923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
    Wiback SJ; Mahadevan R; Palsson BØ
    J Theor Biol; 2003 Oct; 224(3):313-24. PubMed ID: 12941590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Markov Chain Monte Carlo Algorithm based metabolic flux distribution analysis on Corynebacterium glutamicum.
    Kadirkamanathan V; Yang J; Billings SA; Wright PC
    Bioinformatics; 2006 Nov; 22(21):2681-7. PubMed ID: 16940326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum entropy decomposition of flux distribution at steady state to elementary modes.
    Zhao Q; Kurata H
    J Biosci Bioeng; 2009 Jan; 107(1):84-9. PubMed ID: 19147116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of flux distributions with Monte Carlo functional expansion tallies.
    Griesheimer DP; Martin WR; Holloway JP
    Radiat Prot Dosimetry; 2005; 115(1-4):428-32. PubMed ID: 16381761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candidate states of Helicobacter pylori's genome-scale metabolic network upon application of "loop law" thermodynamic constraints.
    Price ND; Thiele I; Palsson BØ
    Biophys J; 2006 Jun; 90(11):3919-28. PubMed ID: 16533855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of enzymopathies in the human red blood cells by constraint-based stoichiometric modeling approaches.
    Durmuş Tekir S; Cakir T; Ulgen KO
    Comput Biol Chem; 2006 Oct; 30(5):327-38. PubMed ID: 16987707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Software for dynamic analysis of tracer-based metabolomic data: estimation of metabolic fluxes and their statistical analysis.
    Selivanov VA; Marin S; Lee PW; Cascante M
    Bioinformatics; 2006 Nov; 22(22):2806-12. PubMed ID: 17000750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of Monte Carlo sampling methods for metabolic network models.
    Fallahi S; Skaug HJ; Alendal G
    PLoS One; 2020; 15(7):e0235393. PubMed ID: 32609776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.