BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15178249)

  • 1. Dual role of boxB RNA motif in the mechanisms of termination/antitermination at the lambda tR1 terminator revealed in vivo.
    Vieu E; Rahmouni AR
    J Mol Biol; 2004 Jun; 339(5):1077-87. PubMed ID: 15178249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination.
    Patterson TA; Zhang Z; Baker T; Johnson LL; Friedman DI; Court DL
    J Mol Biol; 1994 Feb; 236(1):217-28. PubMed ID: 8107107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda.
    Chattopadhyay S; Garcia-Mena J; DeVito J; Wolska K; Das A
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):4061-5. PubMed ID: 7732031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of the N-dependent antitermination complex of phage lambda: NusA and RNA bind independently to different unfolded domains of the N protein.
    Van Gilst MR; von Hippel PH
    J Mol Biol; 1997 Nov; 274(2):160-73. PubMed ID: 9398524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE).
    Cilley CD; Williamson JR
    RNA; 1997 Jan; 3(1):57-67. PubMed ID: 8990399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product.
    Whalen WA; Das A
    New Biol; 1990 Nov; 2(11):975-91. PubMed ID: 2151659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the spacial requirements for RNA-protein interactions within the N antitermination complex of bacteriophage lambda.
    Horiya S; Inaba M; Koh CS; Uehara H; Masui N; Ishibashi M; Matsufuji S; Harada K
    Nucleic Acids Symp Ser (Oxf); 2009; (53):91-2. PubMed ID: 19749275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda.
    Rees WA; Weitzel SE; Das A; von Hippel PH
    J Mol Biol; 1997 Nov; 273(4):797-813. PubMed ID: 9367773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Y39A mutation of HK022 Nun disrupts a boxB interaction but preserves termination activity.
    Burmann BM; Uc-Mass A; Schweimer K; Gottesman ME; Rösch P
    Biochemistry; 2008 Jul; 47(28):7335-41. PubMed ID: 18563916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational changes of conserved residues in the Q-loop region of transcription factor Rho greatly reduce secondary site RNA-binding.
    Wei RR; Richardson JP
    J Mol Biol; 2001 Dec; 314(5):1007-15. PubMed ID: 11743718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific Rho-RNA interactions in transcription termination.
    Graham JE
    Nucleic Acids Res; 2004; 32(10):3093-100. PubMed ID: 15181174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion analysis of the lambda tR1 termination region. Effect of sequences near the transcript release sites, and the minimum length of rho-dependent transcripts.
    Hart CM; Roberts JW
    J Mol Biol; 1994 Apr; 237(3):255-65. PubMed ID: 8145240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations of the phage lambda nutL region that prevent the action of Nun, a site-specific transcription termination factor.
    Baron J; Weisberg RA
    J Bacteriol; 1992 Mar; 174(6):1983-9. PubMed ID: 1532174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of early transcription termination by Rho026.
    Washburn RS; Jin DJ; Stitt BL
    J Mol Biol; 1996 Jul; 260(3):347-58. PubMed ID: 8757798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of functional regions of the Nun transcription termination protein of phage HK022 and the N antitermination protein of phage lambda using hybrid nun-N genes.
    Henthorn KS; Friedman DI
    J Mol Biol; 1996 Mar; 257(1):9-20. PubMed ID: 8632463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo.
    Zhou Y; Mah TF; Yu YT; Mogridge J; Olson ER; Greenblatt J; Friedman DI
    J Mol Biol; 2001 Jun; 310(1):33-49. PubMed ID: 11419935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro characterization of transcription termination factor Rho from Escherichia coli rho(nusD) mutants.
    Washburn RS; Stitt BL
    J Mol Biol; 1996 Jul; 260(3):332-46. PubMed ID: 8757797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential modes of recognition in N peptide-boxB complexes.
    Austin RJ; Xia T; Ren J; Takahashi TT; Roberts RW
    Biochemistry; 2003 Dec; 42(50):14957-67. PubMed ID: 14674772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative description of the binding states and in vitro function of antitermination protein N of bacteriophage lambda.
    Conant CR; Van Gilst MR; Weitzel SE; Rees WA; von Hippel PH
    J Mol Biol; 2005 May; 348(5):1039-57. PubMed ID: 15854643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNA-protein complex: direct probing of the interfacial recognition dynamics and its correlation with biological functions.
    Xia T; Becker HC; Wan C; Frankel A; Roberts RW; Zewail AH
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8119-23. PubMed ID: 12815093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.