BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15178253)

  • 1. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase.
    Kang YN; Adachi M; Utsumi S; Mikami B
    J Mol Biol; 2004 Jun; 339(5):1129-40. PubMed ID: 15178253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of threonine 342 mutants of soybean beta-amylase: role of a conformational change of the inner loop in the catalytic mechanism.
    Kang YN; Tanabe A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2005 Apr; 44(13):5106-16. PubMed ID: 15794648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose.
    Miyake H; Kurisu G; Kusunoki M; Nishimura S; Kitamura S; Nitta Y
    Biochemistry; 2003 May; 42(19):5574-81. PubMed ID: 12741813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum from a bacterial type to a higher-plant type.
    Hirata A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2004 Oct; 43(39):12523-31. PubMed ID: 15449941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of Glu380 and Leu383 of soybean beta-amylase. A proposed action mechanism.
    Totsuka A; Fukazawa C
    Eur J Biochem; 1996 Sep; 240(3):655-9. PubMed ID: 8856067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose.
    Mikami B; Adachi M; Kage T; Sarikaya E; Nanmori T; Shinke R; Utsumi S
    Biochemistry; 1999 Jun; 38(22):7050-61. PubMed ID: 10353816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis.
    Mikami B; Degano M; Hehre EJ; Sacchettini JC
    Biochemistry; 1994 Jun; 33(25):7779-87. PubMed ID: 8011643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the sevenfold mutant of barley beta-amylase with increased thermostability at 2.5 A resolution.
    Mikami B; Yoon HJ; Yoshigi N
    J Mol Biol; 1999 Jan; 285(3):1235-43. PubMed ID: 9918723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and enzymatic analysis of soybean beta-amylase mutants with increased pH optimum.
    Hirata A; Adachi M; Sekine A; Kang YN; Utsumi S; Mikami B
    J Biol Chem; 2004 Feb; 279(8):7287-95. PubMed ID: 14638688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.
    Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H
    J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy of a conformational transition of beta-strand 6 in soybean beta-amylase caused by substrate (or inhibitor) binding to the catalytical site.
    Pujadas G; Palau J
    Protein Sci; 1997 Nov; 6(11):2409-17. PubMed ID: 9385643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in beta-amylase.
    Ishikawa K; Nakatani H; Katsuya Y; Fukazawa C
    Biochemistry; 2007 Jan; 46(3):792-8. PubMed ID: 17223700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maltal binding mechanism and a role of the mobile loop of soybean beta-amylase.
    Kunikata T; Nishimura S; Nitta Y
    Biosci Biotechnol Biochem; 1996 Jul; 60(7):1104-8. PubMed ID: 8782404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of a mutant maltotetraose-forming exo-amylase cocrystallized with maltopentaose.
    Yoshioka Y; Hasegawa K; Matsuura Y; Katsube Y; Kubota M
    J Mol Biol; 1997 Aug; 271(4):619-28. PubMed ID: 9281429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.
    Hrmova M; Fincher GB
    Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger.
    Christensen U; Olsen K; Stoffer BB; Svensson B
    Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism.
    Xu Y; Nakajima Y; Ito K; Zheng H; Oyama H; Heiser U; Hoffmann T; Gärtner UT; Demuth HU; Yoshimoto T
    J Mol Biol; 2008 Jan; 375(3):708-19. PubMed ID: 18042490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis.
    Kadziola A; Søgaard M; Svensson B; Haser R
    J Mol Biol; 1998 Apr; 278(1):205-17. PubMed ID: 9571044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution.
    Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC
    J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated docking of alpha-(1-->4)- and alpha-(1-->6)-linked glucosyl trisaccharides and maltopentaose into the soybean beta-amylase active site.
    Rockey WM; Laederach A; Reilly PJ
    Proteins; 2000 Aug; 40(2):299-309. PubMed ID: 10842343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.