These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 15178801)

  • 1. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception.
    Busza A; Emery-Le M; Rosbash M; Emery P
    Science; 2004 Jun; 304(5676):1503-6. PubMed ID: 15178801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photic signaling by cryptochrome in the Drosophila circadian system.
    Lin FJ; Song W; Meyer-Bernstein E; Naidoo N; Sehgal A
    Mol Cell Biol; 2001 Nov; 21(21):7287-94. PubMed ID: 11585911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic CRYPTOCHROME renders TIM light sensitive in the Drosophila ovary.
    Rush BL; Murad A; Emery P; Giebultowicz JM
    J Biol Rhythms; 2006 Aug; 21(4):272-8. PubMed ID: 16864647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY.
    Rosato E; Codd V; Mazzotta G; Piccin A; Zordan M; Costa R; Kyriacou CP
    Curr Biol; 2001 Jun; 11(12):909-17. PubMed ID: 11448767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent sequestration of TIMELESS by CRYPTOCHROME.
    Ceriani MF; Darlington TK; Staknis D; Más P; Petti AA; Weitz CJ; Kay SA
    Science; 1999 Jul; 285(5427):553-6. PubMed ID: 10417378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity.
    Emery P; So WV; Kaneko M; Hall JC; Rosbash M
    Cell; 1998 Nov; 95(5):669-79. PubMed ID: 9845369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new role for cryptochrome in a Drosophila circadian oscillator.
    Krishnan B; Levine JD; Lynch MK; Dowse HB; Funes P; Hall JC; Hardin PE; Dryer SE
    Nature; 2001 May; 411(6835):313-7. PubMed ID: 11357134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clock-gated photic stimulation of timeless expression at cold temperatures and seasonal adaptation in Drosophila.
    Chen WF; Majercak J; Edery I
    J Biol Rhythms; 2006 Aug; 21(4):256-71. PubMed ID: 16864646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS.
    Koh K; Zheng X; Sehgal A
    Science; 2006 Jun; 312(5781):1809-12. PubMed ID: 16794082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate.
    Fogle KJ; Parson KG; Dahm NA; Holmes TC
    Science; 2011 Mar; 331(6023):1409-13. PubMed ID: 21385718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock.
    Peschel N; Veleri S; Stanewsky R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17313-8. PubMed ID: 17068124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless.
    Peschel N; Chen KF; Szabo G; Stanewsky R
    Curr Biol; 2009 Feb; 19(3):241-7. PubMed ID: 19185492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRYPTOCHROME mediates behavioral executive choice in response to UV light.
    Baik LS; Fogle KJ; Roberts L; Galschiodt AM; Chevez JA; Recinos Y; Nguy V; Holmes TC
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):776-781. PubMed ID: 28062690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.
    Vinayak P; Coupar J; Hughes SE; Fozdar P; Kilby J; Garren E; Yoshii T; Hirsh J
    PLoS Genet; 2013; 9(7):e1003615. PubMed ID: 23874218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure.
    Shao QM; Sehadová H; Ichihara N; Sehnal F; Takeda M
    J Biol Rhythms; 2006 Apr; 21(2):118-31. PubMed ID: 16603676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.