These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15179537)

  • 1. Ion-beam analysis of CuInSe2 solar cells deposited on polyimide foil.
    Spemann D; Lorenz M; Butz T; Otte K
    Anal Bioanal Chem; 2004 Jun; 379(4):622-7. PubMed ID: 15179537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive 3D-characterization of Zn 2-2x Cu x In x S 2-thin films with ion beam analysis.
    Spemann D; Vogt J; Butz T; Oppermann D; Bente K
    Anal Bioanal Chem; 2002 Oct; 374(4):626-30. PubMed ID: 12397481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.
    Dong H; Quintilla A; Cemernjak M; Popescu R; Gerthsen D; Ahlswede E; Feldmann C
    J Colloid Interface Sci; 2014 Feb; 415():103-10. PubMed ID: 24267336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency.
    Ahn S; Choi YJ; Kim K; Eo YJ; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Yoon K
    ChemSusChem; 2013 Jul; 6(7):1282-7. PubMed ID: 23681958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles.
    Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z
    ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.
    Ahn S; Son TH; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Park SH; Yoon K
    ChemSusChem; 2012 Sep; 5(9):1773-7. PubMed ID: 22890958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature direct conversion of Cu-In films to CuInSe₂ via selenization reaction in supercritical fluid.
    Tomai T; Rangappa D; Honma I
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3268-71. PubMed ID: 21838244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy of chemical transformation from In2Se3 to CuInSe2 nanowires through solid state reaction.
    Schoen DT; Peng H; Cui Y
    J Am Chem Soc; 2009 Jun; 131(23):7973-5. PubMed ID: 19507900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell analysis with the new Leipzig high-energy ion nanoprobe.
    Osterreicher J; Vogt J; Tanner JM; Lehmann D; Spemann D; Reinert T; Butz T; Navratil L; Kuna P
    Radiats Biol Radioecol; 2003; 43(2):223-6. PubMed ID: 12754816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of antiferromagnetic interactions through Cu vacancies in Mn-substituted CuInSe2 chalcopyrites.
    Yao J; Brunetta CD; Aitken JA
    J Phys Condens Matter; 2012 Feb; 24(8):086006. PubMed ID: 22277835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of dandelion-shaped CuInSe2 nanostructures by a two-step solvothermal process.
    Zhou W; Yin Z; Sim DH; Zhang H; Ma J; Hng HH; Yan Q
    Nanotechnology; 2011 May; 22(19):195607. PubMed ID: 21436506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration of various trace elements in the rat retina and their distribution in different structures.
    Ugarte M; Grime GW; Lord G; Geraki K; Collingwood JF; Finnegan ME; Farnfield H; Merchant M; Bailey MJ; Ward NI; Foster PJ; Bishop PN; Osborne NN
    Metallomics; 2012 Dec; 4(12):1245-54. PubMed ID: 23093062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of indium segregation on the surface versus bulk chemistry for indium-doped TiO2.
    Atanacio AJ; Bak T; Nowotny J
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6626-34. PubMed ID: 23145539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method.
    Diao CC; Kuo HH; Tzou WC; Chen YL; Yang CF
    Materials (Basel); 2014 Jan; 7(1):206-217. PubMed ID: 28788451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry.
    Wagner MS
    Anal Chem; 2005 Feb; 77(3):911-22. PubMed ID: 15679361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics.
    Eisenberg DA; Yu M; Lam CW; Ogunseitan OA; Schoenung JM
    J Hazard Mater; 2013 Sep; 260():534-42. PubMed ID: 23811631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.
    Harvey TB; Mori I; Stolle CJ; Bogart TD; Ostrowski DP; Glaz MS; Du J; Pernik DR; Akhavan VA; Kesrouani H; Vanden Bout DA; Korgel BA
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9134-40. PubMed ID: 23957691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural study of Cu(2-x)Se alloys produced by mechanical alloying.
    Machado KD; de Lima JC; Grandi TA; Campos CE; Maurmann CE; Gasperini AA; Souza SM; Pimenta AF
    Acta Crystallogr B; 2004 Jun; 60(Pt 3):282-6. PubMed ID: 15148431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells.
    Kim S; Kang M; Kim S; Heo JH; Noh JH; Im SH; Seok SI; Kim SW
    ACS Nano; 2013 Jun; 7(6):4756-63. PubMed ID: 23656273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.