These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 15179849)

  • 41. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions: II. Characterization of the equilibrium behavior during freeze-thawing.
    Bhatnagar BS; Martin SM; Teagarden DL; Shalaev EY; Suryanarayanan R
    J Pharm Sci; 2010 Nov; 99(11):4510-24. PubMed ID: 20845450
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing.
    Bhatnagar BS; Martin SM; Teagarden DL; Shalaev EY; Suryanarayanan R
    J Pharm Sci; 2010 Jun; 99(6):2609-19. PubMed ID: 20091827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.
    Li Y; Zhao G; Hossain SMC; Panhwar F; Sun W; Kong F; Zang C; Jiang Z
    Biopreserv Biobank; 2017 Jun; 15(3):228-233. PubMed ID: 28051325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.
    Kleinhans FW; Mazur P
    Cryobiology; 2007 Apr; 54(2):212-22. PubMed ID: 17350609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large Thermal Conductivity Differences between the Crystalline and Vitrified States of DMSO with Applications to Cryopreservation.
    Ehrlich LE; Feig JS; Schiffres SN; Malen JA; Rabin Y
    PLoS One; 2015; 10(5):e0125862. PubMed ID: 25985058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.
    Manuel TJ; Munnangi P; Rubinsky B
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1654-1659. PubMed ID: 28113196
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The thermodynamic principles of isochoric cryopreservation.
    Rubinsky B; Perez PA; Carlson ME
    Cryobiology; 2005 Apr; 50(2):121-38. PubMed ID: 15843002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extra- and intracellular ice formation in mouse oocytes.
    Mazur P; Seki S; Pinn IL; Kleinhans FW; Edashige K
    Cryobiology; 2005 Aug; 51(1):29-53. PubMed ID: 15975568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrohalite spatial distribution in frozen cell cultures measured using confocal Raman microscopy.
    Kreiner-Møller A; Stracke F; Zimmermann H
    Cryobiology; 2014 Aug; 69(1):41-7. PubMed ID: 24836373
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of antibiotics on thermodynamic properties of freezing media in rabbit species: A first calorimetric approach.
    Salvetti P; Joly T; Baudot A
    Cryobiology; 2006 Oct; 53(2):268-75. PubMed ID: 16930582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cryopreservation of collagen-based tissue equivalents. II. Improved freezing in the presence of cryoprotective agents.
    Neidert MR; Devireddy RV; Tranquillo RT; Bischof JC
    Tissue Eng; 2004; 10(1-2):23-32. PubMed ID: 15009927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation.
    Wowk B; Fahy GM; Ahmedyar S; Taylor MJ; Rabin Y
    Cryobiology; 2018 Jun; 82():70-77. PubMed ID: 29660316
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The development of the cell cryopreservation protocol with controlled rate thawing.
    Gurina TM; Pakhomov AV; Polyakova AL; Legach EI; Bozhok GA
    Cell Tissue Bank; 2016 Jun; 17(2):303-16. PubMed ID: 26384675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.
    Wang HY; Lu SS; Lun ZR
    Cryobiology; 2009 Feb; 58(1):115-117. PubMed ID: 19026625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of solution composition on the theoretical prediction of ice nucleation kinetics and thermodynamics.
    Karlsson JO
    Cryobiology; 2010 Feb; 60(1):43-51. PubMed ID: 19615991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct concentration measurements of the unfrozen portion of solutions under freezing.
    Chen HH; Clarke DM; Gao D
    Cryobiology; 2010 Aug; 61(1):161-5. PubMed ID: 20599887
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli.
    Pedersen PG; Holmstrup M
    J Comp Physiol B; 2003 Sep; 173(7):601-9. PubMed ID: 12898166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved cryopreservation of in vitro-produced bovine embryos using a chemically defined freezing medium.
    Bruyère P; Baudot A; Guyader-Joly C; Guérin P; Louis G; Buff S
    Theriogenology; 2012 Oct; 78(6):1294-302. PubMed ID: 22898026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glucose and glycerol temperature-pressure correlations for the design of cryopreservation protocols in an isochoric system at subfreezing temperature.
    Beșchea GA; Câmpean ŞI; Tăbăcaru MB; Şerban A; Rubinsky B; Năstase G
    Biochem Biophys Res Commun; 2021 Jun; 559():42-47. PubMed ID: 33933991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.