These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15179855)

  • 21. Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution.
    Prot V; Haaverstad R; Skallerud B
    Biomech Model Mechanobiol; 2009 Feb; 8(1):43-55. PubMed ID: 18193309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional Grading of a Transversely Isotropic Hyperelastic Model with Applications in Modeling Tricuspid and Mitral Valve Transition Regions.
    Roy R; Warren E; Xu Y; Yow C; Madhurapantula RS; Orgel JPRO; Lister K
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of decellularization and cross-linking techniques on the fatigue life and calcification of mitral valve chordae tendineae.
    Gunning GM; Murphy BP
    J Mech Behav Biomed Mater; 2016 Apr; 57():321-33. PubMed ID: 26875146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour.
    Kunzelman KS; Cochran RP; Murphree SS; Ring WS; Verrier ED; Eberhart RC
    J Heart Valve Dis; 1993 Mar; 2(2):236-44. PubMed ID: 8261162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element analysis of the mitral valve.
    Kunzelman KS; Cochran RP; Chuong C; Ring WS; Verrier ED; Eberhart RD
    J Heart Valve Dis; 1993 May; 2(3):326-40. PubMed ID: 8269128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitral ring annuloplasty relieves tension of the secondary but not primary chordae tendineae in the anterior mitral leaflet.
    Nielsen SL; Lomholt M; Johansen P; Hansen SB; Andersen NT; Hasenkam JM
    J Thorac Cardiovasc Surg; 2011 Mar; 141(3):732-7. PubMed ID: 20579667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of anterior mitral leaflet second-order chordae tendineae on left ventricular systolic function.
    Nielsen SL; Timek TA; Green GR; Dagum P; Daughters GT; Hasenkam JM; Bolger AF; Ingels NB; Miller DC
    Circulation; 2003 Jul; 108(4):486-91. PubMed ID: 12860916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of human mitral valve chordae tendineae: variation with size and strain rate.
    Lim KO; Boughner DR
    Can J Physiol Pharmacol; 1975 Jun; 53(3):330-9. PubMed ID: 1148920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model.
    Kunzelman KS; Reimink MS; Cochran RP
    Cardiovasc Surg; 1997 Aug; 5(4):427-34. PubMed ID: 9350801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geometric distribution of chordae tendineae: an important anatomic feature in mitral valve function.
    He S; Weston MW; Lemmon J; Jensen M; Levine RA; Yoganathan AP
    J Heart Valve Dis; 2000 Jul; 9(4):495-501; discussion 502-3. PubMed ID: 10947041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel method to measure mitral valve chordal tension.
    He Z; Jowers C
    J Biomech Eng; 2009 Jan; 131(1):014501. PubMed ID: 19045931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical and morphometric study of mitral valve chordae tendineae and related papillary muscle.
    Chen S; Sari CR; Gao H; Lei Y; Segers P; De Beule M; Wang G; Ma X
    J Mech Behav Biomed Mater; 2020 Nov; 111():104011. PubMed ID: 32835989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of mitral chordae tendineae on the flow in the left heart ventricle.
    Meschini V; de Tullio MD; Verzicco R
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):27. PubMed ID: 29488031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.
    Toma M; Jensen MØ; Einstein DR; Yoganathan AP; Cochran RP; Kunzelman KS
    Ann Biomed Eng; 2016 Apr; 44(4):942-53. PubMed ID: 26183963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of glutaraldehyde based cross-linking on the viscoelasticity of mitral valve basal chordae tendineae.
    Constable M; Burton HE; Lawless BM; Gramigna V; Buchan KG; Espino DM
    Biomed Eng Online; 2018 Jul; 17(1):93. PubMed ID: 30001710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer simulation of human mitral valve mechanics and motion.
    Miller GE; Marcotte H
    Comput Biol Med; 1987; 17(5):305-19. PubMed ID: 3677619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordae tendineae.
    Liao J; Vesely I
    J Biomech; 2007; 40(2):390-8. PubMed ID: 16483580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On modelling and analysis of healthy and pathological human mitral valves: two case studies.
    Prot V; Skallerud B; Sommer G; Holzapfel GA
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):167-77. PubMed ID: 20129416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructure of porcine mitral valve chordae tendineae.
    Liao J; Priddy LB; Wang B; Chen J; Vesely I
    J Heart Valve Dis; 2009 May; 18(3):292-9. PubMed ID: 19557986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.