BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15179865)

  • 1. Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics.
    Li G; Wuerz TH; DeFrate LE
    J Biomech Eng; 2004 Apr; 126(2):314-8. PubMed ID: 15179865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Establishment of a testing system of three-dimensional spinal kinematics in vivo based on two- and three-dimensional image registration].
    Li JY; Jiao PF; Zhang MC; Nie LY; Zhao WD
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Dec; 26(12):1694-7. PubMed ID: 17259099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy.
    Fregly BJ; Rahman HA; Banks SA
    J Biomech Eng; 2005 Aug; 127(4):692-9. PubMed ID: 16121540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images.
    Zhu Z; Li G
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1245-56. PubMed ID: 21806411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics.
    Dennis DA; Mahfouz MR; Komistek RD; Hoff W
    J Biomech; 2005 Feb; 38(2):241-53. PubMed ID: 15598450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimized image matching method for determining in-vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system.
    Bingham J; Li G
    J Biomech Eng; 2006 Aug; 128(4):588-95. PubMed ID: 16813450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy.
    Tsai TY; Lu TW; Chen CM; Kuo MY; Hsu HC
    Med Phys; 2010 Mar; 37(3):1273-84. PubMed ID: 20384265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
    Li G; Van de Velde SK; Bingham JT
    J Biomech; 2008; 41(7):1616-22. PubMed ID: 18394629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy.
    Lu TW; Tsai TY; Kuo MY; Hsu HC; Chen HL
    Med Eng Phys; 2008 Oct; 30(8):1004-12. PubMed ID: 18417412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion.
    Defrate LE; Nha KW; Papannagari R; Moses JM; Gill TJ; Li G
    J Biomech; 2007; 40(8):1716-22. PubMed ID: 17070815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion of the femoral condyles in flexion and extension during a continuous lunge.
    Feng Y; Tsai TY; Li JS; Wang S; Hu H; Zhang C; Rubash HE; Li G
    J Orthop Res; 2015 Apr; 33(4):591-7. PubMed ID: 25641056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weight-bearing knee kinematics in subjects with two types of anterior cruciate ligament reconstructions.
    Kanisawa I; Banks AZ; Banks SA; Moriya H; Tsuchiya A
    Knee Surg Sports Traumatol Arthrosc; 2003 Jan; 11(1):16-22. PubMed ID: 12548446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system.
    Hanson GR; Suggs JF; Freiberg AA; Durbhakula S; Li G
    J Orthop Res; 2006 May; 24(5):974-81. PubMed ID: 16596640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy.
    Yamazaki T; Watanabe T; Nakajima Y; Sugamoto K; Tomita T; Yoshikawa H; Tamura S
    IEEE Trans Med Imaging; 2004 May; 23(5):602-12. PubMed ID: 15147013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model-based method for the reconstruction of total knee replacement kinematics.
    Zuffi S; Leardini A; Catani F; Fantozzi S; Cappello A
    IEEE Trans Med Imaging; 1999 Oct; 18(10):981-91. PubMed ID: 10628957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
    Akbarshahi M; Schache AG; Fernandez JW; Baker R; Banks S; Pandy MG
    J Biomech; 2010 May; 43(7):1292-301. PubMed ID: 20206357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Registration of 3-D Knee Implant Models to Fluoroscopic Images Using Lipschitzian Optimization.
    Flood PDL; Banks SA
    IEEE Trans Med Imaging; 2018 Jan; 37(1):326-335. PubMed ID: 29293431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined magnetic resonance imaging approach for the assessment of in vivo knee joint kinematics under full weight-bearing conditions.
    Al Hares G; Eschweiler J; Radermacher K
    Proc Inst Mech Eng H; 2015 Jun; 229(6):439-51. PubMed ID: 25979443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of single-plane fluoroscopy in determining relative position and orientation of total knee replacement components.
    Acker S; Li R; Murray H; John PS; Banks S; Mu S; Wyss U; Deluzio K
    J Biomech; 2011 Feb; 44(4):784-7. PubMed ID: 21092967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total knee arthroplasty three-dimensional kinematic estimation prevision. From a two-dimensional fluoroscopy acquired dynamic model.
    Lebel BP; Pineau V; Gouzy SL; Geais L; Parienti JJ; Dutheil JJ; Vielpeau CH
    Orthop Traumatol Surg Res; 2011 Apr; 97(2):111-20. PubMed ID: 21439928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.