These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15180041)

  • 1. Capturing mercury with ultraviolet light.
    Gorss J
    Environ Sci Technol; 2004 May; 38(9):158A-159A. PubMed ID: 15180041
    [No Abstract]   [Full Text] [Related]  

  • 2. Dramatically improved mercury removal.
    Betts K
    Environ Sci Technol; 2003 Aug; 37(15):283A-284A. PubMed ID: 12966960
    [No Abstract]   [Full Text] [Related]  

  • 3. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.
    Meischen SJ; Van Pelt VJ; Zarate EA; Stephens EA
    J Air Waste Manag Assoc; 2004 Jan; 54(1):60-7. PubMed ID: 14871013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.
    Fuente-Cuesta A; Diaz-Somoano M; Lopez-Anton MA; Cieplik M; Fierro JL; Martínez-Tarazona MR
    J Environ Manage; 2012 May; 98():23-8. PubMed ID: 22325640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemical system for removing and recovering elemental mercury from a gas stream.
    Bolger PT; Szlag DC
    Environ Sci Technol; 2002 Oct; 36(20):4430-5. PubMed ID: 12387419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters.
    Flora JR; Hargis RA; O'Dowd WJ; Karash A; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2006 Mar; 56(3):343-9. PubMed ID: 16573197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into elemental mercury (Hg
    Zhou C; Song Z; Yang H; Wu H; Wang B; Yu J; Sun L
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):21097-21105. PubMed ID: 29770935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.
    Scala F; Clack HL
    J Hazard Mater; 2008 Apr; 152(2):616-23. PubMed ID: 17703878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of catalysts for oxidation of mercury in flue gas.
    Presto AA; Granite EJ
    Environ Sci Technol; 2006 Sep; 40(18):5601-9. PubMed ID: 17007115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases.
    Gao Y; Zhang Z; Wu J; Duan L; Umar A; Sun L; Guo Z; Wang Q
    Environ Sci Technol; 2013 Oct; 47(19):10813-23. PubMed ID: 23991895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of mercury speciation through the SCR system in power plants.
    Yang HM; Pan WP
    J Environ Sci (China); 2007; 19(2):181-4. PubMed ID: 17915726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor.
    Rodríguez S; Almquist C; Lee TG; Furuuchi M; Hedrick E; Biswas P
    J Air Waste Manag Assoc; 2004 Feb; 54(2):149-56. PubMed ID: 14977316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury control costs drop.
    Cooney CM
    Environ Sci Technol; 2007 Feb; 41(4):1061-2. PubMed ID: 17593698
    [No Abstract]   [Full Text] [Related]  

  • 14. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.
    Yan N; Chen W; Chen J; Qu Z; Guo Y; Yang S; Jia J
    Environ Sci Technol; 2011 Jul; 45(13):5725-30. PubMed ID: 21662986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.
    Ancora MP; Zhang L; Wang S; Schreifels J; Hao J
    J Environ Sci (China); 2015 Jul; 33():125-34. PubMed ID: 26141885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of iodine monochloride for the oxidation of elemental mercury.
    Qu Z; Yan N; Liu P; Jia J; Yang S
    J Hazard Mater; 2010 Nov; 183(1-3):132-7. PubMed ID: 20674159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretically predicted rate constants for mercury oxidation by hydrogen chloride in coal combustion flue gases.
    Wilcox J; Robles J; Marsden DC; Blowers P
    Environ Sci Technol; 2003 Sep; 37(18):4199-204. PubMed ID: 14524453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas.
    An J; Shang K; Lu N; Jiang Y; Wang T; Li J; Wu Y
    J Hazard Mater; 2014 Mar; 268():237-45. PubMed ID: 24513449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel oxidative method for the absorption of Hg(0) from flue gas of coal fired power plants using task specific ionic liquid scrubber.
    Barnea Z; Sachs T; Chidambaram M; Sasson Y
    J Hazard Mater; 2013 Jan; 244-245():495-500. PubMed ID: 23199593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wisconsin pulls out ahead on mercury controls.
    Cooney CM
    Environ Sci Technol; 2002 Dec; 36(23):440A-441A. PubMed ID: 12523392
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.