These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15180070)

  • 1. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.
    Su C; Puls RW
    Environ Sci Technol; 2004 May; 38(9):2715-20. PubMed ID: 15180070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride.
    Su C; Puls RW
    Environ Sci Technol; 2001 Nov; 35(22):4562-8. PubMed ID: 11757617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation.
    Su C; Puls RW
    Environ Sci Technol; 2001 Apr; 35(7):1487-92. PubMed ID: 11348091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+.
    Huang YH; Zhang TC
    Water Res; 2005 May; 39(9):1751-60. PubMed ID: 15899273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low pH on nitrate reduction by iron powder.
    Huang YH; Zhang TC
    Water Res; 2004 Jun; 38(11):2631-42. PubMed ID: 15207593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products.
    Manning BA; Hunt ML; Amrhein C; Yarmoff JA
    Environ Sci Technol; 2002 Dec; 36(24):5455-61. PubMed ID: 12521175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiological characteristics in a zero-valent iron reactive barrier.
    Gu B; Watson DB; Wu L; Phillips DH; White DC; Zhou J
    Environ Monit Assess; 2002 Aug; 77(3):293-309. PubMed ID: 12194417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control.
    Fan X; Guan X; Ma J; Ai H
    J Environ Sci (China); 2009; 21(8):1028-35. PubMed ID: 19862914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal.
    Alowitz MJ; Scherer MM
    Environ Sci Technol; 2002 Feb; 36(3):299-306. PubMed ID: 11871541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment.
    Satapanajaru T; Shea PJ; Comfort SD; Roh Y
    Environ Sci Technol; 2003 Nov; 37(22):5219-27. PubMed ID: 14655711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.
    Cho DW; Song H; Schwartz FW; Kim B; Jeon BH
    Chemosphere; 2015 Apr; 125():41-9. PubMed ID: 25665757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand effects on nitrate reduction by zero-valent iron: Role of surface complexation.
    Song X; Chen Z; Wang X; Zhang S
    Water Res; 2017 May; 114():218-227. PubMed ID: 28249213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of common ions on nitrate removal by zero-valent iron from alkaline soil.
    Tang C; Zhang Z; Sun X
    J Hazard Mater; 2012 Sep; 231-232():114-9. PubMed ID: 22795587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy.
    Mishra D; Farrell J
    Environ Sci Technol; 2005 Jan; 39(2):645-50. PubMed ID: 15707067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.
    Liu H; Guo M; Zhang Y
    Environ Technol; 2014; 35(5-8):917-24. PubMed ID: 24645474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects.
    Melitas N; Chuffe-Moscoso O; Farrell J
    Environ Sci Technol; 2001 Oct; 35(19):3948-53. PubMed ID: 11642457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrokinetic/Fe0 permeable reactive barrier system for the treatment of nitrate-contaminated subsurface soils.
    Suzuki T; Oyama Y; Moribe M; Niinae M
    Water Res; 2012 Mar; 46(3):772-8. PubMed ID: 22153957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.