These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15180204)

  • 1. Effects of heat and electron irradiation on the melting behavior of Al-Si alloy particles and motion of the Al nanosphere within.
    Howe JM; Yokota T; Murayama M; Jesser WA
    J Electron Microsc (Tokyo); 2004; 53(2):107-14. PubMed ID: 15180204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation.
    Yokota T; Murayama M; Howe JM
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):265504. PubMed ID: 14754065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are electron tweezers possible?
    Oleshko VP; Howe JM
    Ultramicroscopy; 2011 Nov; 111(11):1599-606. PubMed ID: 21946000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ observation of the chemical bonding state of Si in the molten state of eutectic Au-Si alloy of Au81Si19 by using a soft X-ray emission spectroscopy electron microscope.
    Terauchi M; Umemoto N; K Sato Y; Ageishi M; Tsai AP
    Microscopy (Oxf); 2022 Jan; 71(1):34-40. PubMed ID: 34302725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ high resolution electron microscopy/electron energy loss spectroscopy observation of wetting of a Si surface by molten Al.
    Tsukimoto S; Arai S; Konno M; Kamino T; Sasaki K; Saka H
    J Microsc; 2001 Jul; 203(Pt 1):17-21. PubMed ID: 11454150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale liquid Al phase formation through beam heating of MgAl
    Lee SB; Chae JY; Han HN
    Nanoscale Adv; 2024 May; 6(11):2830-2837. PubMed ID: 38817438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ observation of the melting and sintering of submicron-sized bismuth particles.
    Diewald S; Feldmann C
    Nanotechnology; 2009 Mar; 20(12):125704. PubMed ID: 19420481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys.
    Nogita K; McDonald SD; Tsujimoto K; Yasuda K; Dahle AK
    J Electron Microsc (Tokyo); 2004; 53(4):361-9. PubMed ID: 15585468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures.
    Huang CW; Hsin CL; Wang CW; Chu FH; Kao CY; Chen JY; Huang YT; Lu KC; Wu WW; Chen LJ
    Nanoscale; 2012 Aug; 4(15):4702-6. PubMed ID: 22744608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Morphology Changes of Fine Eutectic Si Phase in Al-10%Si Cast Alloy during Heat Treatment by Synchrotron Radiation Nanotomography.
    Furuta S; Kobayashi M; Uesugi K; Takeuchi A; Aoba T; Miura H
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30060577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.
    Roshanghias A; Yakymovych A; Bernardi J; Ipser H
    Nanoscale; 2015 Mar; 7(13):5843-51. PubMed ID: 25757694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.
    Zhao B; Wang H; Qiao N; Wang C; Hu M
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):832-841. PubMed ID: 27770961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electron beam irradiation on the temperature of single AuGe nanoparticles in a TEM.
    Kryshtal A; Mielczarek M; Pawlak J
    Ultramicroscopy; 2022 Mar; 233():113459. PubMed ID: 34942542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Transmission Electron Microscope Observation of Melting of Aluminum Particles.
    Arai S; Tsukimoto S; Saka H
    Microsc Microanal; 1998 May; 4(3):264-268. PubMed ID: 9767663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electron beam irradiation in TEM on the microstructure and composition of nanoprecipitates in Al-Mg-Si alloys.
    Chen H; Li K; Yang M; Zhang Z; Kong Y; Lu Q; Du Y
    Micron; 2019 Jan; 116():116-123. PubMed ID: 30368200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smoke Suppression in Electron Beam Melting of Inconel 718 Alloy Powder Based on Insulator-Metal Transition of Surface Oxide Film by Mechanical Stimulation.
    Chiba A; Daino Y; Aoyagi K; Yamanaka K
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistep Crystallization and Melting Pathways in the Free-Energy Landscape of a Au-Si Eutectic Alloy.
    Kurtuldu G; Löffler JF
    Adv Sci (Weinh); 2020 Jun; 7(12):1903544. PubMed ID: 32596111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Al and Al-Si alloy microspheres by ultrasonic irradiating the molten salt-aluminum immiscible system.
    Wang Z
    Ultrason Sonochem; 2019 Jan; 50():373-376. PubMed ID: 30314818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.