These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15180367)

  • 1. Distribution of atrazine into three chemical fractions: impact of sediment depth and organic carbon content.
    Smalling KL; Aelion CM
    Environ Toxicol Chem; 2004 May; 23(5):1164-71. PubMed ID: 15180367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological and chemical transformation of atrazine in coastal aquatic sediments.
    Smalling KL; Aelion CM
    Chemosphere; 2006 Jan; 62(2):188-96. PubMed ID: 16125751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atrazine biodegradation to deisopropylatrazine and deethylatrazine in coastal sediments of different land uses.
    Aelion CM; Mathur PP
    Environ Toxicol Chem; 2001 Nov; 20(11):2411-9. PubMed ID: 11699763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of soil and sediment composition on acetochlor sorption and desorption.
    Hiller E; Cernanský S; Krascsenits Z; Milicka J
    Environ Sci Pollut Res Int; 2009 Jul; 16(5):546-54. PubMed ID: 19277747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial variability in 14C-herbicide degradation in surface and subsurface soils.
    Charnay MP; Tuis S; Coquet Y; Barriuso E
    Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of 14C-atrazine bound residues in brown soil and rendzina fractions.
    Munier-Lamy C; Feuvrier MP; Choné T
    J Environ Qual; 2002; 31(1):241-7. PubMed ID: 11837428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research farm.
    Radosevich M; Traina SJ; Tuovinen OH
    Biodegradation; 1996 Apr; 7(2):137-49. PubMed ID: 8882806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment.
    Sun K; Gao B; Zhang Z; Zhang G; Zhao Y; Xing B
    Environ Pollut; 2010 Dec; 158(12):3520-6. PubMed ID: 20855138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of condensed carbonaceous materials on the sorption of hydrophobic organic contaminants in subsurface sediments.
    Jeong S; Wander MM; Kleineidam S; Grathwohl P; Ligouis BS; Werth CJ
    Environ Sci Technol; 2008 Mar; 42(5):1458-64. PubMed ID: 18441788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sediment on the fate of metolachlor and atrazine in surface water.
    Rice PJ; Anderson TA; Coats JR
    Environ Toxicol Chem; 2004 May; 23(5):1145-55. PubMed ID: 15180365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation and binding of atrazine in surface and subsurface soils.
    Blume E; Bischoff M; Moorman TB; Turco RF
    J Agric Food Chem; 2004 Dec; 52(24):7382-8. PubMed ID: 15563223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variability in herbicide degradation in the subsurface environment of a groundwater protection zone.
    Wood M; Issa S; Albuquerque M; Johnson AC
    Pest Manag Sci; 2002 Jan; 58(1):3-9. PubMed ID: 11838281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotopic constraints on the fate of petroleum residues sequestered in salt marsh sediments.
    White HK; Reddy CM; Eglinton TI
    Environ Sci Technol; 2005 Apr; 39(8):2545-51. PubMed ID: 15884347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation.
    Cornelissen G; Gustafsson O; Bucheli TD; Jonker MT; Koelmans AA; van Noort PC
    Environ Sci Technol; 2005 Sep; 39(18):6881-95. PubMed ID: 16201609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants.
    Xiao B; Yu Z; Huang W; Song J; Peng P
    Environ Sci Technol; 2004 Nov; 38(22):5842-52. PubMed ID: 15573581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of organic matter, nutrients, and cyclodextrin on microbial and chemical herbicide and degradate dissipation in subsurface sediment slurries.
    Kerminen K; Le Moël R; Harju V; Kontro MH
    Sci Total Environ; 2018 Mar; 618():1449-1458. PubMed ID: 29054658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of water soluble organic carbon in three sediment size fractions: effect of the humic substances.
    Sun L; Sun W; Ni J
    J Environ Sci (China); 2009; 21(1):113-9. PubMed ID: 19402409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment.
    Sangster JL; Oke H; Zhang Y; Bartelt-Hunt SL
    J Hazard Mater; 2015 Dec; 299():112-21. PubMed ID: 26094244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sediment-water distribution of organic contaminants in aquatic ecosystems: the role of organic carbon mineralization.
    Gobas FA; MacLean LG
    Environ Sci Technol; 2003 Feb; 37(4):735-41. PubMed ID: 12636272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.