These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15180907)

  • 41. HotKnots: heuristic prediction of RNA secondary structures including pseudoknots.
    Ren J; Rastegari B; Condon A; Hoos HH
    RNA; 2005 Oct; 11(10):1494-504. PubMed ID: 16199760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. From consensus structure prediction to RNA gene finding.
    Bernhart SH; Hofacker IL
    Brief Funct Genomic Proteomic; 2009 Nov; 8(6):461-71. PubMed ID: 19833701
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA Thermodynamic Structural Entropy.
    Garcia-Martin JA; Clote P
    PLoS One; 2015; 10(11):e0137859. PubMed ID: 26555444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corpus based learning of stochastic, context-free grammars combined with Hidden Markov Models for tRNA modelling.
    Garcia-Gomez JM; Benedi JM; Vicente J; Robles M
    Int J Bioinform Res Appl; 2005; 1(3):305-18. PubMed ID: 18048138
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences.
    Mathews DH; Turner DH
    J Mol Biol; 2002 Mar; 317(2):191-203. PubMed ID: 11902836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GenRGenS: software for generating random genomic sequences and structures.
    Ponty Y; Termier M; Denise A
    Bioinformatics; 2006 Jun; 22(12):1534-5. PubMed ID: 16574695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA modeling using Gibbs sampling and stochastic context free grammars.
    Grate L; Herbster M; Hughey R; Haussler D; Mian IS; Noller H
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():138-46. PubMed ID: 7584383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asymptotics of RNA shapes.
    Lorenz WA; Ponty Y; Clote P
    J Comput Biol; 2008; 15(1):31-63. PubMed ID: 18257676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.
    Chen X; He SM; Bu D; Zhang F; Wang Z; Chen R; Gao W
    Bioinformatics; 2008 Sep; 24(18):1994-2001. PubMed ID: 18586700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving RNA secondary structure prediction with structure mapping data.
    Sloma MF; Mathews DH
    Methods Enzymol; 2015; 553():91-114. PubMed ID: 25726462
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Paradigms for computational nucleic acid design.
    Dirks RM; Lin M; Winfree E; Pierce NA
    Nucleic Acids Res; 2004; 32(4):1392-403. PubMed ID: 14990744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA secondary structure prediction based on free energy and phylogenetic analysis.
    Juan V; Wilson C
    J Mol Biol; 1999 Jun; 289(4):935-47. PubMed ID: 10369773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting RNA secondary structures with pseudoknots by MCMC sampling.
    Metzler D; Nebel ME
    J Math Biol; 2008 Jan; 56(1-2):161-81. PubMed ID: 17589847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data.
    Sükösd Z; Knudsen B; Kjems J; Pedersen CN
    Bioinformatics; 2012 Oct; 28(20):2691-2. PubMed ID: 22877864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energy-directed RNA structure prediction.
    Hofacker IL
    Methods Mol Biol; 2014; 1097():71-84. PubMed ID: 24639155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Limits in accuracy and a strategy of RNA structure prediction using experimental information.
    Wang J; Williams B; Chirasani VR; Krokhotin A; Das R; Dokholyan NV
    Nucleic Acids Res; 2019 Jun; 47(11):5563-5572. PubMed ID: 31106330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marginalized kernels for RNA sequence data analysis.
    Kin T; Tsuda K; Asai K
    Genome Inform; 2002; 13():112-22. PubMed ID: 14571380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Research on folding diversity in statistical learning methods for RNA secondary structure prediction.
    Zhu Y; Xie Z; Li Y; Zhu M; Chen YP
    Int J Biol Sci; 2018; 14(8):872-882. PubMed ID: 29989089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA pseudoknot prediction in energy-based models.
    Lyngsø RB; Pedersen CN
    J Comput Biol; 2000; 7(3-4):409-27. PubMed ID: 11108471
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identifying novel sequence variants of RNA 3D motifs.
    Zirbel CL; Roll J; Sweeney BA; Petrov AI; Pirrung M; Leontis NB
    Nucleic Acids Res; 2015 Sep; 43(15):7504-20. PubMed ID: 26130723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.