These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 15180936)
1. A spline function approach for detecting differentially expressed genes in microarray data analysis. He W Bioinformatics; 2004 Nov; 20(17):2954-63. PubMed ID: 15180936 [TBL] [Abstract][Full Text] [Related]
2. Empirical Bayes screening of many p-values with applications to microarray studies. Datta S; Datta S Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856 [TBL] [Abstract][Full Text] [Related]
3. Classification of microarray data with factor mixture models. Martella F Bioinformatics; 2006 Jan; 22(2):202-8. PubMed ID: 16287938 [TBL] [Abstract][Full Text] [Related]
4. A new outlier removal approach for cDNA microarray normalization. Wu Y; Yan L; Liu H; Sun H; Xie H Biotechniques; 2009 Aug; 47(2):691-2, 694-700. PubMed ID: 19737130 [TBL] [Abstract][Full Text] [Related]
5. Sample size for FDR-control in microarray data analysis. Jung SH Bioinformatics; 2005 Jul; 21(14):3097-104. PubMed ID: 15845654 [TBL] [Abstract][Full Text] [Related]
6. Ranking analysis for identifying differentially expressed genes. Qi Y; Sun H; Sun Q; Pan L Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142 [TBL] [Abstract][Full Text] [Related]
7. Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments. Zhao Y; Pan W Bioinformatics; 2003 Jun; 19(9):1046-54. PubMed ID: 12801864 [TBL] [Abstract][Full Text] [Related]
8. Detecting differentially expressed genes by relative entropy. Yan X; Deng M; Fung WK; Qian M J Theor Biol; 2005 Jun; 234(3):395-402. PubMed ID: 15784273 [TBL] [Abstract][Full Text] [Related]
9. Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments. Gao X Bioinformatics; 2006 Jun; 22(12):1486-94. PubMed ID: 16574697 [TBL] [Abstract][Full Text] [Related]
10. A GMM-IG framework for selecting genes as expression panel biomarkers. Wang M; Chen JY Artif Intell Med; 2010; 48(2-3):75-82. PubMed ID: 20004087 [TBL] [Abstract][Full Text] [Related]
11. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies. Noma H; Matsui S Stat Med; 2013 May; 32(11):1904-16. PubMed ID: 23281021 [TBL] [Abstract][Full Text] [Related]
12. A non-transformation method for identifying differentially expressed genes from cDNA microarrays. Zhang JG; Yin ZJ; Zhang Q Yi Chuan Xue Bao; 2006 Jan; 33(1):80-8. PubMed ID: 16450591 [TBL] [Abstract][Full Text] [Related]
13. Estimating p-values in small microarray experiments. Yang H; Churchill G Bioinformatics; 2007 Jan; 23(1):38-43. PubMed ID: 17077100 [TBL] [Abstract][Full Text] [Related]
14. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data. Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192 [TBL] [Abstract][Full Text] [Related]
15. Ensemble dependence model for classification and prediction of cancer and normal gene expression data. Qiu P; Wang ZJ; Liu KJ Bioinformatics; 2005 Jul; 21(14):3114-21. PubMed ID: 15879455 [TBL] [Abstract][Full Text] [Related]
16. Practical FDR-based sample size calculations in microarray experiments. Hu J; Zou F; Wright FA Bioinformatics; 2005 Aug; 21(15):3264-72. PubMed ID: 15932903 [TBL] [Abstract][Full Text] [Related]
17. Non-linear tests for identifying differentially expressed genes or genetic networks. Xiong H Bioinformatics; 2006 Apr; 22(8):919-23. PubMed ID: 16473873 [TBL] [Abstract][Full Text] [Related]
18. Bias in the estimation of false discovery rate in microarray studies. Pawitan Y; Murthy KR; Michiels S; Ploner A Bioinformatics; 2005 Oct; 21(20):3865-72. PubMed ID: 16105901 [TBL] [Abstract][Full Text] [Related]
19. Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments. Parodi S; Pistoia V; Muselli M BMC Bioinformatics; 2008 Oct; 9():410. PubMed ID: 18834513 [TBL] [Abstract][Full Text] [Related]
20. Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis. Nettleton D; Recknor J; Reecy JM Bioinformatics; 2008 Jan; 24(2):192-201. PubMed ID: 18042553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]