These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 15180936)

  • 41. Extracting three-way gene interactions from microarray data.
    Zhang J; Ji Y; Zhang L
    Bioinformatics; 2007 Nov; 23(21):2903-9. PubMed ID: 17921496
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovery of highly differentiative gene groups from microarray gene expression data using the gene club approach.
    Mao S; Dong G
    J Bioinform Comput Biol; 2005 Dec; 3(6):1263-80. PubMed ID: 16374906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene selection using a two-level hierarchical Bayesian model.
    Bae K; Mallick BK
    Bioinformatics; 2004 Dec; 20(18):3423-30. PubMed ID: 15256404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonparametric tests for differential gene expression and interaction effects in multi-factorial microarray experiments.
    Gao X; Song PX
    BMC Bioinformatics; 2005 Jul; 6():186. PubMed ID: 16042764
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust method for detecting differential gene expression in twin studies.
    Begun A
    Bioinformatics; 2006 Dec; 22(23):2905-9. PubMed ID: 17032676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identifying differentially expressed genes from microarray experiments via statistic synthesis.
    Yang YH; Xiao Y; Segal MR
    Bioinformatics; 2005 Apr; 21(7):1084-93. PubMed ID: 15513985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A theoretical analysis of gene selection.
    Mukherjee S; Roberts SJ
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():131-41. PubMed ID: 16448007
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Weighted analysis of microarray gene expression using maximum-likelihood.
    Bakewell DJ; Wit E
    Bioinformatics; 2005 Mar; 21(6):723-9. PubMed ID: 15454412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.
    Yu F; Chen MH; Kuo L; Talbott H; Davis JS
    BMC Bioinformatics; 2015 Aug; 16():245. PubMed ID: 26250443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.
    Sundaramurthy G; Eghbalnia HR
    Comput Biol Med; 2015 Dec; 67():29-40. PubMed ID: 26492320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing differential expression in two-color microarrays: a resampling-based empirical Bayes approach.
    Li D; Le Pape MA; Parikh NI; Chen WX; Dye TD
    PLoS One; 2013; 8(11):e80099. PubMed ID: 24312198
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mixture model for estimating the local false discovery rate in DNA microarray analysis.
    Liao JG; Lin Y; Selvanayagam ZE; Shih WJ
    Bioinformatics; 2004 Nov; 20(16):2694-701. PubMed ID: 15145810
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A generalized likelihood ratio test to identify differentially expressed genes from microarray data.
    Wang S; Ethier S
    Bioinformatics; 2004 Jan; 20(1):100-4. PubMed ID: 14693815
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A simple procedure for estimating the false discovery rate.
    Dalmasso C; Broët P; Moreau T
    Bioinformatics; 2005 Mar; 21(5):660-8. PubMed ID: 15479710
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developing a novel test to detect cancer genes from microarray data.
    Mathur S; Mathur S
    Int J Bioinform Res Appl; 2014; 10(6):628-46. PubMed ID: 25335567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DegPack: a web package using a non-parametric and information theoretic algorithm to identify differentially expressed genes in multiclass RNA-seq samples.
    An J; Kim K; Chae H; Kim S
    Methods; 2014 Oct; 69(3):306-14. PubMed ID: 24981074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of parametric versus permutation methods with applications to general and temporal microarray gene expression data.
    Xu R; Li X
    Bioinformatics; 2003 Jul; 19(10):1284-9. PubMed ID: 12835273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mixture models for detecting differentially expressed genes in microarrays.
    Jones LB; Bean R; McLachlan GJ; Zhu JX
    Int J Neural Syst; 2006 Oct; 16(5):353-62. PubMed ID: 17117496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Computational Approach Using Ratio Statistics for Identifying Housekeeping Genes from cDNA Microarray Data.
    Sengupta T; Bhushan M; Wangikar PP
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1457-63. PubMed ID: 26671815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A mixture model approach to sample size estimation in two-sample comparative microarray experiments.
    Jørstad TS; Midelfart H; Bones AM
    BMC Bioinformatics; 2008 Feb; 9():117. PubMed ID: 18298817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.