These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 15180936)

  • 61. Statistical methods for ranking differentially expressed genes.
    Broberg P
    Genome Biol; 2003; 4(6):R41. PubMed ID: 12801415
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pooling mRNA in microarray experiments and its effect on power.
    Zhang W; Carriquiry A; Nettleton D; Dekkers JC
    Bioinformatics; 2007 May; 23(10):1217-24. PubMed ID: 17344238
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Differential and trajectory methods for time course gene expression data.
    Liang Y; Tayo B; Cai X; Kelemen A
    Bioinformatics; 2005 Jul; 21(13):3009-16. PubMed ID: 15886280
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A nonparametric likelihood ratio test to identify differentially expressed genes from microarray data.
    Bokka S; Mathur SK
    Appl Bioinformatics; 2006; 5(4):267-76. PubMed ID: 17140273
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assessment method for a power analysis to identify differentially expressed pathways.
    Tripathi S; Emmert-Streib F
    PLoS One; 2012; 7(5):e37510. PubMed ID: 22629411
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An empirical Bayes approach to inferring large-scale gene association networks.
    Schäfer J; Strimmer K
    Bioinformatics; 2005 Mar; 21(6):754-64. PubMed ID: 15479708
    [TBL] [Abstract][Full Text] [Related]  

  • 67. General power and sample size calculations for high-dimensional genomic data.
    van Iterson M; van de Wiel MA; Boer JM; de Menezes RX
    Stat Appl Genet Mol Biol; 2013 Aug; 12(4):449-67. PubMed ID: 23934609
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data.
    Breitling R; Herzyk P
    J Bioinform Comput Biol; 2005 Oct; 3(5):1171-89. PubMed ID: 16278953
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Baumgartner-Weiss-Schindler test for the detection of differentially expressed genes in replicated microarray experiments.
    Neuhäuser M; Senske R
    Bioinformatics; 2004 Dec; 20(18):3553-64. PubMed ID: 15284098
    [TBL] [Abstract][Full Text] [Related]  

  • 70. β-empirical Bayes inference and model diagnosis of microarray data.
    Mollah MM; Mollah MN; Kishino H
    BMC Bioinformatics; 2012 Jun; 13():135. PubMed ID: 22713095
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments.
    Pan W
    Bioinformatics; 2002 Apr; 18(4):546-54. PubMed ID: 12016052
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessing stability of gene selection in microarray data analysis.
    Qiu X; Xiao Y; Gordon A; Yakovlev A
    BMC Bioinformatics; 2006 Feb; 7():50. PubMed ID: 16451725
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A novel means of using gene clusters in a two-step empirical Bayes method for predicting classes of samples.
    Ji Y; Tsui KW; Kim K
    Bioinformatics; 2005 Apr; 21(7):1055-61. PubMed ID: 15514000
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mixture model analysis of DNA microarray images.
    Blekas K; Galatsanos NP; Likas A; Lagaris IE
    IEEE Trans Med Imaging; 2005 Jul; 24(7):901-9. PubMed ID: 16011320
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A theoretical analysis of the selection of differentially expressed genes.
    Mukherjee S; Roberts SJ
    J Bioinform Comput Biol; 2005 Jun; 3(3):627-43. PubMed ID: 16108087
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Population Proportion approach for ranking differentially expressed genes.
    Gadgil M
    BMC Bioinformatics; 2008 Sep; 9():380. PubMed ID: 18801167
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An empirical Bayes' approach to joint analysis of multiple microarray gene expression studies.
    Ruan L; Yuan M
    Biometrics; 2011 Dec; 67(4):1617-26. PubMed ID: 21517790
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Support vector machine quantile regression for detecting differentially expressed genes in microarray analysis.
    Sohn I; Kim S; Hwang C; Lee JW; Shim J
    Methods Inf Med; 2008; 47(5):459-67. PubMed ID: 18852921
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The t-mixture model approach for detecting differentially expressed genes in microarrays.
    Jiao S; Zhang S
    Funct Integr Genomics; 2008 Aug; 8(3):181-6. PubMed ID: 18210172
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Normality of oligonucleotide microarray data and implications for parametric statistical analyses.
    Giles PJ; Kipling D
    Bioinformatics; 2003 Nov; 19(17):2254-62. PubMed ID: 14630654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.