These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 15180979)

  • 1. Neural coupling between upper and lower limbs during recumbent stepping.
    Huang HJ; Ferris DP
    J Appl Physiol (1985); 2004 Oct; 97(4):1299-308. PubMed ID: 15180979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of movement frequency on interlimb coupling during recumbent stepping.
    Kao PC; Ferris DP
    Motor Control; 2005 Apr; 9(2):144-63. PubMed ID: 15995256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recumbent stepping has similar but simpler neural control compared to walking.
    Stoloff RH; Zehr EP; Ferris DP
    Exp Brain Res; 2007 Apr; 178(4):427-38. PubMed ID: 17072607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals.
    de Kam D; Rijken H; Manintveld T; Nienhuis B; Dietz V; Duysens J
    J Appl Physiol (1985); 2013 Jul; 115(1):34-42. PubMed ID: 23661622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of upper limb muscles during human walking.
    Kuhtz-Buschbeck JP; Jing B
    J Electromyogr Kinesiol; 2012 Apr; 22(2):199-206. PubMed ID: 21945656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotion in Parkinson's disease: neuronal coupling of upper and lower limbs.
    Dietz V; Michel J
    Brain; 2008 Dec; 131(Pt 12):3421-31. PubMed ID: 18930965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online mutability of step direction during rapid stepping reactions evoked by postural perturbation.
    Tripp BP; McIlroy WE; Maki BE
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):140-52. PubMed ID: 15068197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of textured surfaces on postural stability and lower limb muscle activity.
    Hatton AL; Dixon J; Martin D; Rome K
    J Electromyogr Kinesiol; 2009 Oct; 19(5):957-64. PubMed ID: 18565764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of feedback and feedforward strategies to locomotor adaptations.
    Lam T; Anderschitz M; Dietz V
    J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion.
    Canton S; MacLellan MJ
    Hum Mov Sci; 2018 Feb; 57():314-323. PubMed ID: 28958710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upper and lower extremity proprioceptive inputs modulate EMG activity of the trapezius.
    Tataroglu C; Kuçuk FK; Ozkul A
    J Electromyogr Kinesiol; 2011 Feb; 21(1):77-81. PubMed ID: 21036060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper and lower limb muscle activation is bidirectionally and ipsilaterally coupled.
    Huang HJ; Ferris DP
    Med Sci Sports Exerc; 2009 Sep; 41(9):1778-89. PubMed ID: 19657291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arm movements during split-belt walking reveal predominant patterns of interlimb coupling.
    MacLellan MJ; Qaderdan K; Koehestanie P; Duysens J; McFadyen BJ
    Hum Mov Sci; 2013 Feb; 32(1):79-90. PubMed ID: 23176813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle fatigue changes cutaneous suppression of propriospinal drive to human upper limb muscles.
    Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2007 Apr; 580(Pt 1):211-23. PubMed ID: 17218357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The investigation of control mechanisms of stepping rhythm in human in the air-stepping conditions during passive and voluntary leg movements].
    Solopova IA; Selionon VA; Grishin AA
    Fiziol Cheloveka; 2010; 36(5):83-94. PubMed ID: 21061673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leg muscle activity during tandem stance and the control of body balance in the frontal plane.
    Sozzi S; Honeine JL; Do MC; Schieppati M
    Clin Neurophysiol; 2013 Jun; 124(6):1175-86. PubMed ID: 23294550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper and lower limb muscle power relationships in mobility-limited older adults.
    Herman S; Kiely DK; Leveille S; O'Neill E; Cyberey S; Bean JF
    J Gerontol A Biol Sci Med Sci; 2005 Apr; 60(4):476-80. PubMed ID: 15933387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking.
    Klarner T; Chan HK; Wakeling JM; Lam T
    Gait Posture; 2010 Mar; 31(3):360-5. PubMed ID: 20097076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.