These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15181469)

  • 1. Conformational change and inactivation of arginine kinase from shrimp Feneropenaeus chinensis in oxidized dithiothreitol solutions.
    Pan JC; Yu ZH; Hui EF; Zhou HM
    Biochem Cell Biol; 2004 Jun; 82(3):361-7. PubMed ID: 15181469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of the role of reactive cystein in arginine kinase: reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase reactivated by dithiothreitol.
    Pan JC; Cheng Y; Hui EF; Zhou HM
    Biochem Biophys Res Commun; 2004 Apr; 317(2):539-44. PubMed ID: 15063791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unassisted refolding of urea-denatured arginine kinase from shrimp Feneropenaeus chinensis: evidence for two equilibrium intermediates in the refolding pathway.
    Pan JC; Yu Z; Su XY; Sun YQ; Rao XM; Zhou HM
    Protein Sci; 2004 Jul; 13(7):1892-901. PubMed ID: 15215531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of aspartic acid and potassium chloride on arginine kinase from shrimp.
    Tang HM; Yang YY; Zhang SF
    Int J Biol Macromol; 2006 Dec; 40(1):15-21. PubMed ID: 16828861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid).
    Feng Z; Qin G; Xicheng W
    Int J Biol Macromol; 2005 Aug; 36(3):184-90. PubMed ID: 16038973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denaturation and urea gradient gel electrophoresis of arginine kinase: evidence for a collapsed-state conformation.
    France RM; Grossman SH
    Arch Biochem Biophys; 1996 Feb; 326(1):93-9. PubMed ID: 8579378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate studies on refolding of arginine kinase denatured by guanidine hydrochloride.
    Tang HM; Yu H
    Biochem Cell Biol; 2005 Apr; 83(2):109-14. PubMed ID: 15864319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline unfolding and salt-induced folding of arginine kinase from shrimp Feneropenaeus chinensis under high pH conditions.
    Liu WQ; Rao XM; Yu ZH
    Int J Biol Macromol; 2006 May; 38(3-5):211-5. PubMed ID: 16616362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand stabilization of the beta 2 adrenergic receptor: effect of DTT on receptor conformation monitored by circular dichroism and fluorescence spectroscopy.
    Lin S; Gether U; Kobilka BK
    Biochemistry; 1996 Nov; 35(46):14445-51. PubMed ID: 8931540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, characterization, and hydrodynamic properties of arginine kinase from gulf shrimp (Penaeus aztecus).
    France RM; Sellers DS; Grossman SH
    Arch Biochem Biophys; 1997 Sep; 345(1):73-8. PubMed ID: 9281313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of polyols on the reactivation of guanidium chloride-denatured arginine kinase from shrimp feneropenaeus chinensis muscle.
    Yu Z; Li B
    Protein Pept Lett; 2003 Apr; 10(2):199-211. PubMed ID: 12678818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Cys271 in conformational changes of arginine kinase.
    Liu N; Wang JS; Wang WD; Pan JC
    Int J Biol Macromol; 2011 Jul; 49(1):98-102. PubMed ID: 21507330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of detergent in refolding of GdnHCl-denatured arginine kinase from shrimp Fenneropenaeus Chinensis: the solubilization of aggregate and refolding in detergent solutions.
    Pan JC; Wang JS; Cheng Y; Yu Z; Rao XM; Zhou HM
    Biochem Cell Biol; 2005 Apr; 83(2):140-6. PubMed ID: 15864323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation of residue arginine 330 of arginine kinase results in the generation of the oxidized form more susceptible.
    Wang WD; Wang JS; Shi YL; Zhang XC; Pan JC; Zou GL
    Int J Biol Macromol; 2013 Mar; 54():238-43. PubMed ID: 23262386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of disulfide bonds in the conformational stability and catalytic activity of phytase.
    Wang XY; Meng FG; Zhou HM
    Biochem Cell Biol; 2004 Apr; 82(2):329-34. PubMed ID: 15060628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Ag+ on arginine kinase: inhibition kinetics.
    Sheng Q; Lu ZR; Mu H; Zou HC; Zou F; Yao SJ
    J Biomol Struct Dyn; 2009 Aug; 27(1):59-64. PubMed ID: 19492863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction between residues 62 and 193 play a key role in activity and structural stability of arginine kinase.
    Liu N; Wang JS; Wang WD; Pan JC
    Int J Biol Macromol; 2011 Oct; 49(3):402-8. PubMed ID: 21645540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of arginine kinase from the American cockroach (Periplaneta americana).
    Brown AE; France RM; Grossman SH
    Arch Insect Biochem Physiol; 2004 Jun; 56(2):51-60. PubMed ID: 15146540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the amino acid residue P272 of arginine kinase is involved in its activity, structure and stability.
    Wu QY; Li F; Wang XY
    Int J Biol Macromol; 2008 Nov; 43(4):367-72. PubMed ID: 18703083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine kinase peptide mass fingerprinting as a proteomic approach for species identification and taxonomic analysis of commercially relevant shrimp species.
    Ortea I; Cañas B; Calo-Mata P; Barros-Velázquez J; Gallardo JM
    J Agric Food Chem; 2009 Jul; 57(13):5665-72. PubMed ID: 19489608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.