BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15181473)

  • 1. Bioenergetic remodeling during cellular differentiation: changes in cytochrome c oxidase regulation do not affect the metabolic phenotype.
    Lyons CN; Leary SC; Moyes CD
    Biochem Cell Biol; 2004 Jun; 82(3):391-9. PubMed ID: 15181473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of nuclear genes for cytochrome c oxidase during myogenesis.
    Lomax MI; Coucouvanis E; Schon EA; Barald KF
    Muscle Nerve; 1990 Apr; 13(4):330-7. PubMed ID: 2162485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in oxygen tension affect cardiac mitochondrial respiration rate via changes in the rate of mitochondrial hydrogen peroxide production.
    Di Maria CA; Bogoyevitch MA; McKitrick DJ; Arnolda LF; Hool LC; Arthur PG
    J Mol Cell Cardiol; 2009 Jul; 47(1):49-56. PubMed ID: 19328207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells.
    Malinska D; Kudin AP; Bejtka M; Kunz WS
    Mitochondrion; 2012 Jan; 12(1):144-8. PubMed ID: 21782978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome c oxidase maintains mitochondrial respiration during partial inhibition by nitric oxide.
    Palacios-Callender M; Hollis V; Frakich N; Mateo J; Moncada S
    J Cell Sci; 2007 Jan; 120(Pt 1):160-5. PubMed ID: 17164295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia.
    Taylor CT; Moncada S
    Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):643-7. PubMed ID: 19713530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity.
    Wu D; Cederbaum A
    Toxicol Appl Pharmacol; 2006 Oct; 216(2):282-92. PubMed ID: 16938321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac H11 kinase/Hsp22 stimulates oxidative phosphorylation and modulates mitochondrial reactive oxygen species production: Involvement of a nitric oxide-dependent mechanism.
    Laure L; Long R; Lizano P; Zini R; Berdeaux A; Depre C; Morin D
    Free Radic Biol Med; 2012 Jun 1-15; 52(11-12):2168-76. PubMed ID: 22542467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in mitochondrial activity during avian myoblast differentiation: influence of triiodothyronine or v-erb A expression.
    Rochard P; Cassar-Malek I; Marchal S; Wrutniak C; Cabello G
    J Cell Physiol; 1996 Aug; 168(2):239-47. PubMed ID: 8707859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of mitochondrial biogenesis during myogenesis.
    Remels AH; Langen RC; Schrauwen P; Schaart G; Schols AM; Gosker HR
    Mol Cell Endocrinol; 2010 Feb; 315(1-2):113-20. PubMed ID: 19804813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects.
    Tengan CH; Kiyomoto BH; Godinho RO; Gamba J; Neves AC; Schmidt B; Oliveira AS; Gabbai AA
    Biochem Biophys Res Commun; 2007 Aug; 359(3):771-7. PubMed ID: 17560547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism.
    Manser RC; Leese HJ; Houghton FD
    Biol Reprod; 2004 Aug; 71(2):528-33. PubMed ID: 15070826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of mitochondrial oxidative stress in astrocytes by nitric oxide precedes disruption of energy metabolism.
    Jacobson J; Duchen MR; Hothersall J; Clark JB; Heales SJ
    J Neurochem; 2005 Oct; 95(2):388-95. PubMed ID: 16104850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2.
    Chen ZX; Pervaiz S
    Cell Death Differ; 2010 Mar; 17(3):408-20. PubMed ID: 19834492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.
    Martin C; Dubouchaud H; Mosoni L; Chardigny JM; Oudot A; Fontaine E; Vergely C; Keriel C; Rochette L; Leverve X; Demaison L
    Aging Cell; 2007 Apr; 6(2):165-77. PubMed ID: 17286611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells.
    Chen ZX; Pervaiz S
    Cell Death Differ; 2007 Sep; 14(9):1617-27. PubMed ID: 17510660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells.
    Chen CT; Shih YR; Kuo TK; Lee OK; Wei YH
    Stem Cells; 2008 Apr; 26(4):960-8. PubMed ID: 18218821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase.
    Hutchinson DS; Csikasz RI; Yamamoto DL; Shabalina IG; Wikström P; Wilcke M; Bengtsson T
    Cell Signal; 2007 Jul; 19(7):1610-20. PubMed ID: 17391917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1.
    Semenza GL
    Biochem J; 2007 Jul; 405(1):1-9. PubMed ID: 17555402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial nitric-oxide synthase: role in pathophysiology.
    Haynes V; Elfering SL; Squires RJ; Traaseth N; Solien J; Ettl A; Giulivi C
    IUBMB Life; 2003; 55(10-11):599-603. PubMed ID: 14711005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.