These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15181804)

  • 21. Resonance fluorescence spectroscopy in laser-induced cavitation bubbles.
    Koch S; Garen W; Neu W; Reuter R
    Anal Bioanal Chem; 2006 May; 385(2):312-5. PubMed ID: 16520936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation.
    Jansen ED; Asshauer T; Frenz M; Motamedi M; Delacrétaz G; Welch AJ
    Lasers Surg Med; 1996; 18(3):278-93. PubMed ID: 8778524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An empirical experimental investigation on the effect of an external electric field on the behaviour of laser-induced cavitation bubbles.
    Phukan A; Kharphanbuh SM; Nath A
    Phys Chem Chem Phys; 2023 Jan; 25(3):2477-2485. PubMed ID: 36601990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid.
    Wagener P; Ibrahimkutty S; Menzel A; Plech A; Barcikowski S
    Phys Chem Chem Phys; 2013 Mar; 15(9):3068-74. PubMed ID: 23183423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experiment and Simulation Study of the Laser-Induced Cavitation Bubble Technique for Forming a Microgroove in Aluminum Foil.
    Wang L; Su C; Jia X; Guo Z; Zou Z
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser.
    Fu L; Wang S; Xin J; Wang S; Yao C; Zhang Z; Wang J
    Opt Express; 2018 Oct; 26(22):28560-28575. PubMed ID: 30470031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of single bubble cleaning.
    Reuter F; Mettin R
    Ultrason Sonochem; 2016 Mar; 29():550-62. PubMed ID: 26187759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collinear double pulse laser ablation in water for the production of silver nanoparticles.
    Dell'Aglio M; Gaudiuso R; ElRashedy R; De Pascale O; Palazzo G; De Giacomo A
    Phys Chem Chem Phys; 2013 Dec; 15(48):20868-75. PubMed ID: 24196485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation.
    Fujimoto JG; Lin WZ; Ippen EP; Puliafito CA; Steinert RF
    Invest Ophthalmol Vis Sci; 1985 Dec; 26(12):1771-7. PubMed ID: 4066213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser.
    Marguet CG; Sung JC; Springhart WP; L'Esperance JO; Zhou S; Zhong P; Albala DM; Preminger GM
    J Urol; 2005 May; 173(5):1797-800. PubMed ID: 15821590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water.
    Juhasz T; Hu XH; Turi L; Bor Z
    Lasers Surg Med; 1994; 15(1):91-8. PubMed ID: 7997052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning.
    Minsier V; Proost J
    Ultrason Sonochem; 2008 Apr; 15(4):598-604. PubMed ID: 17662636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Intrastromal refractive corneal surgery with pico-second Nd:YAG laser pulses].
    Vogel A; Asiyo-Vogel M; Birngruber R
    Ophthalmologe; 1994 Oct; 91(5):655-62. PubMed ID: 7812100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser.
    Mehl A; Kremers L; Salzmann K; Hickel R
    Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser-induced shock-wave-expanded nanobubbles in spherical geometry.
    Horvat D; Agrež V; Požar T; Starman B; Halilovič M; Petkovšek R
    Ultrason Sonochem; 2022 Sep; 89():106160. PubMed ID: 36116244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.