These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15181804)

  • 41. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular dynamics simulation of shock-induced microscopic bubble collapse.
    Zhan S; Duan H; Pan L; Tu J; Jia D; Yang T; Li J
    Phys Chem Chem Phys; 2021 Apr; 23(14):8446-8455. PubMed ID: 33876008
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cavitation bubble interaction with a rigid spherical particle on a microscale.
    Zevnik J; Dular M
    Ultrason Sonochem; 2020 Dec; 69():105252. PubMed ID: 32682313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical and chemical characterization of shock-induced cavitation.
    Parizot L; Dutilleul H; Galvez ME; Chave T; Da Costa P; Nikitenko SI
    Ultrason Sonochem; 2020 Dec; 69():105270. PubMed ID: 32736303
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Mechanism of action, scope of the damage and reduction of side effects in intraocular Nd:YAG laser surgery].
    Vogel A; Schweiger P; Frieser A; Asiyo M; Birngruber R
    Fortschr Ophthalmol; 1990; 87(6):675-87. PubMed ID: 2086418
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.
    Evans R; Camacho-López S; Pérez-Gutiérrez FG; Aguilar G
    Opt Express; 2008 May; 16(10):7481-92. PubMed ID: 18545453
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How the Physicochemical Properties of the Bulk Material Affect the Ablation Crater Profile, Mass Balance, and Bubble Dynamics During Single-Pulse, Nanosecond Laser Ablation in Water.
    Kalus MR; Barcikowski S; Gökce B
    Chemistry; 2021 Apr; 27(19):5978-5991. PubMed ID: 33496348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transient cavitation and acoustic emission produced by different laser lithotripters.
    Zhong P; Tong HL; Cocks FH; Pearle MS; Preminger GM
    J Endourol; 1998 Aug; 12(4):371-8. PubMed ID: 9726407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ measurement of cavitation damage from single bubble collapse using high-speed chronoamperometry.
    Abedini M; Hanke S; Reuter F
    Ultrason Sonochem; 2023 Jan; 92():106272. PubMed ID: 36566520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation of a Liquid Jet by Interaction between a Laser-induced Bubble and a Shock Wave.
    Hirano T; Komatsu M; Ezura M; Uenohara H; Takahashi A; Takayama K; Yoshimoto T
    Interv Neuroradiol; 2001 Dec; 7(Suppl 1):35-40. PubMed ID: 20663374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cavitation induced by shock wave focusing in eye-like experimental configurations.
    Požar T; Petkovšek R
    Biomed Opt Express; 2020 Jan; 11(1):432-447. PubMed ID: 32010526
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy.
    Chen J; Li X; Gu Y; Wang H; Song X; Zeng H
    J Colloid Interface Sci; 2017 Mar; 489():38-46. PubMed ID: 27823761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoscale cavitation in perforation of cellular membrane by shock-wave induced nanobubble collapse.
    Nan N; Si D; Hu G
    J Chem Phys; 2018 Aug; 149(7):074902. PubMed ID: 30134664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Depth effect on the inertial collapse of cavitation bubble under ultrasound: Special emphasis on the role of the wave attenuation.
    Kerabchi N; Merouani S; Hamdaoui O
    Ultrason Sonochem; 2018 Nov; 48():136-150. PubMed ID: 30080536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microgroove formation in thin copper by laser-induced cavitation bubble shock: numerical and experimental investigation.
    Wang L; Deng Y; Zou Z; Xiao Y; Su G; Guo Z
    Appl Opt; 2022 Mar; 61(8):1841-1850. PubMed ID: 35297872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of laser-induced shock waves generated during infrared laser ablation of copper by the optical beam deflection method.
    Rehman ZU; Raza A; Qayyum H; Ullah S; Mahmood S; Qayyum A
    Appl Opt; 2022 Oct; 61(29):8606-8612. PubMed ID: 36255992
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of Cavitation Bubble in Tap Water by Continuous-Wave Laser Focused on a Metallic Surface.
    Kim N; Park H; Do H
    Langmuir; 2019 Mar; 35(9):3308-3318. PubMed ID: 30764612
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes.
    Martí-López L; Ocaña R; Porro JA; Morales M; Ocaña JL
    Appl Opt; 2009 Jul; 48(19):3671-80. PubMed ID: 19571922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.