These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 15182967)
1. Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond. Jacob DL; Otte ML Environ Pollut; 2004 Aug; 130(3):337-45. PubMed ID: 15182967 [TBL] [Abstract][Full Text] [Related]
2. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Jacob DL; Otte ML Sci Total Environ; 2004 Oct; 333(1-3):9-24. PubMed ID: 15364516 [TBL] [Abstract][Full Text] [Related]
3. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Kraus U; Wiegand J Sci Total Environ; 2006 Aug; 367(2-3):855-71. PubMed ID: 16500695 [TBL] [Abstract][Full Text] [Related]
4. Potential biogeochemical and ecological development of a flooded tailings impoundment at the Kristineberg Zn-Cu mine, northern Sweden. Widerlund A; Ebenå G; Landin J Sci Total Environ; 2004 Oct; 333(1-3):249-66. PubMed ID: 15364533 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Deng H; Ye ZH; Wong MH Environ Pollut; 2004 Nov; 132(1):29-40. PubMed ID: 15276271 [TBL] [Abstract][Full Text] [Related]
6. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Conesa HM; Faz A; Arnaldos R Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188 [TBL] [Abstract][Full Text] [Related]
7. Nickel partitioning in formulated and natural freshwater sediments. Doig LE; Liber K Chemosphere; 2006 Feb; 62(6):968-79. PubMed ID: 16122779 [TBL] [Abstract][Full Text] [Related]
8. The Cartagena-La Unión mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. Conesa HM; Schulin R J Environ Monit; 2010 Jun; 12(6):1225-33. PubMed ID: 20390210 [TBL] [Abstract][Full Text] [Related]
9. Processes controlling metal transport and retention as metal-contaminated groundwaters efflux through estuarine sediments. Simpson SL; Maher EJ; Jolley DF Chemosphere; 2004 Sep; 56(9):821-31. PubMed ID: 15261528 [TBL] [Abstract][Full Text] [Related]
10. Influences of wetland plants on weathered acidic mine tailings. Stoltz E; Greger M Environ Pollut; 2006 Nov; 144(2):689-94. PubMed ID: 16584823 [TBL] [Abstract][Full Text] [Related]
11. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Grybos M; Davranche M; Gruau G; Petitjean P J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327 [TBL] [Abstract][Full Text] [Related]
12. Metal accumulation in wild plants surrounding mining wastes. González RC; González-Chávez MC Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286 [TBL] [Abstract][Full Text] [Related]
13. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer. Doerr NA; Ptacek CJ; Blowes DW J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605 [TBL] [Abstract][Full Text] [Related]
14. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Tani FH; Barrington S Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272 [TBL] [Abstract][Full Text] [Related]
15. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Santibáñez C; Verdugo C; Ginocchio R Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913 [TBL] [Abstract][Full Text] [Related]
16. Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni, and Zn to polychaetes Neanthes arenaceodentata. Lee JS; Lee JH Sci Total Environ; 2005 Feb; 338(3):229-41. PubMed ID: 15713331 [TBL] [Abstract][Full Text] [Related]
17. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Butler BA Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Ferreira da Silva E; Almeida SF; Nunes ML; Luís AT; Borg F; Hedlund M; de Sá CM; Patinha C; Teixeira P Sci Total Environ; 2009 Oct; 407(21):5620-36. PubMed ID: 19647289 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Conesa HM; Faz A; Arnaldos R Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952 [TBL] [Abstract][Full Text] [Related]
20. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Freitas H; Prasad MN; Pratas J Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]