These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15182976)

  • 1. Responses of three grass species to creosote during phytoremediation.
    Huang XD; El-Alawi Y; Penrose DM; Glick BR; Greenberg BM
    Environ Pollut; 2004 Aug; 130(3):453-63. PubMed ID: 15182976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils.
    Huang XD; El-Alawi Y; Penrose DM; Glick BR; Greenberg BM
    Environ Pollut; 2004 Aug; 130(3):465-76. PubMed ID: 15182977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of polycyclic aromatic hydrocarbons from creosote-contaminated soil in selected plants and the oligochaete worm Enchytraeus crypticus.
    Allard AS; Malmberg M; Neilson AH; Remberger M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(11):2057-72. PubMed ID: 16287641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation and removal mechanisms in Bouteloua curtipendula growing in sterile hydrocarbon spiked cultures.
    Reynoso-Cuevas L; Gallegos-Martínez ME; Cruz-Sosa F; Gutiérrez-Rojas M
    Int J Phytoremediation; 2011 Jul; 13(6):613-25. PubMed ID: 21972507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil.
    Parrish ZD; Banks MK; Schwab AP
    Int J Phytoremediation; 2004; 6(2):119-37. PubMed ID: 15328979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.
    Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM
    Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of rapeseed oil on the rhizodegradation of polyaromatic hydrocarbons in contaminated soil.
    Gartler J; Wimmer B; Soja G; Reichenauer TG
    Int J Phytoremediation; 2014; 16(7-12):671-83. PubMed ID: 24933877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil.
    Olson PE; Castro A; Joern M; DuTeau NM; Pilon-Smits EA; Reardon KF
    J Environ Qual; 2007; 36(5):1461-9. PubMed ID: 17766825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content.
    Rofkar JR; Dwyer DF
    Int J Phytoremediation; 2013; 15(6):561-72. PubMed ID: 23819297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues.
    Smith MJ; Flowers TH; Duncan HJ; Alder J
    Environ Pollut; 2006 Jun; 141(3):519-25. PubMed ID: 16246476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of salicylic acid and mycorrhizal symbiosis on improvement of fluoranthene phytoremediation using tall fescue (Festuca arundinacea Schreb).
    Rostami M; Rostami S
    Chemosphere; 2019 Oct; 232():70-75. PubMed ID: 31152905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs.
    Alvarez-Bernal D; Contreras-Ramos S; Marsch R; Dendooven L
    Int J Phytoremediation; 2007; 9(2):79-90. PubMed ID: 18246717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Efficiency of alfalfa and reed in the phytoremediation of hydrocarbon polluted soil].
    Muratova AIu; Turkovskaia OV; Hubner T; Kuschk P
    Prikl Biokhim Mikrobiol; 2003; 39(6):681-8. PubMed ID: 14714484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lability of polycyclic aromatic hydrocarbons in the rhizosphere.
    Cofield N; Banks MK; Schwab AP
    Chemosphere; 2008 Feb; 70(9):1644-52. PubMed ID: 17900653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of toxic aromatic pollutants from soil.
    Singh OV; Jain RK
    Appl Microbiol Biotechnol; 2003 Dec; 63(2):128-35. PubMed ID: 12925865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil.
    Gaskin S; Soole K; Bentham R
    Int J Phytoremediation; 2008; 10(5):378-89. PubMed ID: 19260221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I. Dissipation of target contaminants.
    Cofield N; Schwab AP; Banks MK
    Int J Phytoremediation; 2007; 9(5):355-70. PubMed ID: 18246723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil.
    Wang Y; Oyaizu H
    J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creosote toxicity to photosynthesis and plant growth in aquatic microcosms.
    Marwood CA; Bestari KT; Gensemer RW; Solomon KR; Greenberg BM
    Environ Toxicol Chem; 2003 May; 22(5):1075-85. PubMed ID: 12729217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.