These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 15183161)

  • 1. Compound lipophilicity for substrate binding to human P450s in drug metabolism.
    Lewis DF; Jacobs MN; Dickins M
    Drug Discov Today; 2004 Jun; 9(12):530-7. PubMed ID: 15183161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity.
    Lewis DF; Ito Y
    Xenobiotica; 2009 Aug; 39(8):625-35. PubMed ID: 19514836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families.
    Lewis DF
    Curr Med Chem; 2003 Oct; 10(19):1955-72. PubMed ID: 12871098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing better drugs: predicting cytochrome P450 metabolism.
    de Groot MJ
    Drug Discov Today; 2006 Jul; 11(13-14):601-6. PubMed ID: 16793528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human CYPs involved in drug metabolism: structures, substrates and binding affinities.
    Lewis DF; Ito Y
    Expert Opin Drug Metab Toxicol; 2010 Jun; 6(6):661-74. PubMed ID: 20402561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baseline lipophilicity relationships in human cytochromes P450 associated with drug metabolism.
    Lewis DF; Dickins M
    Drug Metab Rev; 2003 Feb; 35(1):1-18. PubMed ID: 12635813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-activity relationships (QSARs) within series of inhibitors for mammalian cytochromes P450 (CYPs).
    Lewis DF; Dickins M
    J Enzyme Inhib; 2001 Oct; 16(4):321-30. PubMed ID: 11916137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of coumarin by human P450s: a molecular modelling study.
    Lewis DF; Ito Y; Lake BG
    Toxicol In Vitro; 2006 Mar; 20(2):256-64. PubMed ID: 16157466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of mammalian cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b(5) enzymes.
    Shimada T; Mernaugh RL; Guengerich FP
    Arch Biochem Biophys; 2005 Mar; 435(1):207-16. PubMed ID: 15680923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the estimation of binding affinity (deltaGbind) for human P450 substrates (based on Km and KD values).
    Lewis DF
    Curr Drug Metab; 2003 Oct; 4(5):331-40. PubMed ID: 14529365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450.
    Clodfelter KH; Waxman DJ; Vajda S
    Biochemistry; 2006 Aug; 45(31):9393-407. PubMed ID: 16878974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative structure-activity relationship analysis on a series of alkyl benzenes metabolized by human cytochrome p450 2E1.
    Lewis DF; Sams C; Loizou GD
    J Biochem Mol Toxicol; 2003; 17(1):47-52. PubMed ID: 12616646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins.
    Kirton SB; Murray CW; Verdonk ML; Taylor RD
    Proteins; 2005 Mar; 58(4):836-44. PubMed ID: 15651036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-activity relationships (QSARs) for substrates of human cytochromes P450 CYP2 family enzymes.
    Lewis DF
    Toxicol In Vitro; 2004 Feb; 18(1):89-97. PubMed ID: 14630066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling.
    Dong D; Wu B; Chow D; Hu M
    Drug Metab Rev; 2012 May; 44(2):192-208. PubMed ID: 22251142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic hydrocarbon binding to cytochrome P450 and other enzyme binding sites: are hydrophobic compounds drawn into the active site or pushed from the aqueous phase?
    Backes WL; Cawley G; Eyer CS; Means M; Causey KM; Canady WJ
    Arch Biochem Biophys; 1993 Jul; 304(1):27-37. PubMed ID: 8323291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of activation energies for aromatic oxidation by cytochrome P450.
    Rydberg P; Ryde U; Olsen L
    J Phys Chem A; 2008 Dec; 112(50):13058-65. PubMed ID: 18986131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural rationalization of novel drug metabolizing mutants of cytochrome P450 BM3.
    Stjernschantz E; van Vugt-Lussenburg BM; Bonifacio A; de Beer SB; van der Zwan G; Gooijer C; Commandeur JN; Vermeulen NP; Oostenbrink C
    Proteins; 2008 Apr; 71(1):336-52. PubMed ID: 17957765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes.
    Lewis DF
    Arch Biochem Biophys; 2003 Jan; 409(1):32-44. PubMed ID: 12464242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking.
    Li W; Tang Y; Liu H; Cheng J; Zhu W; Jiang H
    Proteins; 2008 May; 71(2):938-49. PubMed ID: 18004755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.