These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 15183278)
81. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). Kwon B; Kim Y J Econ Entomol; 2008 Feb; 101(1):36-41. PubMed ID: 18330113 [TBL] [Abstract][Full Text] [Related]
82. Purification and cDNA cloning of a cecropin from the longicorn beetle, Acalolepta luxuriosa. Saito A; Ueda K; Imamura M; Atsumi S; Tabunoki H; Miura N; Watanabe A; Kitami M; Sato R Comp Biochem Physiol B Biochem Mol Biol; 2005 Nov; 142(3):317-23. PubMed ID: 16165382 [TBL] [Abstract][Full Text] [Related]
83. An immunological role of a PKC alpha binding protein (PICK1) expressed in the hemocytes of the beet armyworm, Spodoptera exigua. Shrestha S; Prasad SV; Kim Y Comp Biochem Physiol B Biochem Mol Biol; 2011 Mar; 158(3):216-22. PubMed ID: 21122821 [TBL] [Abstract][Full Text] [Related]
84. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780 [TBL] [Abstract][Full Text] [Related]
85. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. Park Y; Kim Y J Exp Biol; 2013 Nov; 216(Pt 22):4196-203. PubMed ID: 23948473 [TBL] [Abstract][Full Text] [Related]
86. [Expression analysis of antibacterial peptide genes at different development stages of Musca domestica]. Jin XB; Wang Y; Zhu JY; Ma Y; Chu FJ; Yang XR Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2008 Jun; 26(3):187-90. PubMed ID: 19160964 [TBL] [Abstract][Full Text] [Related]
87. Toll immune signal activates cellular immune response via eicosanoids. Shafeeq T; Ahmed S; Kim Y Dev Comp Immunol; 2018 Jul; 84():408-419. PubMed ID: 29577956 [TBL] [Abstract][Full Text] [Related]
88. The Lrp transcriptional factor of an entomopathogenic bacterium, Xenorhabdus hominickii, activates non-ribosomal peptide synthetases to suppress insect immunity. Jin G; Kim IH; Kim Y Dev Comp Immunol; 2024 Feb; 151():105101. PubMed ID: 38000489 [TBL] [Abstract][Full Text] [Related]
89. Cloning and characterization of three chemosensory proteins from Spodoptera exigua and effects of gene silencing on female survival and reproduction. Gong L; Luo Q; Rizwan-ul-Haq M; Hu MY Bull Entomol Res; 2012 Oct; 102(5):600-9. PubMed ID: 22475511 [TBL] [Abstract][Full Text] [Related]
90. A novel calcium-independent phospholipase A Sadekuzzaman M; Gautam N; Kim Y Dev Comp Immunol; 2017 Dec; 77():210-220. PubMed ID: 28851514 [TBL] [Abstract][Full Text] [Related]
91. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling. Sadekuzzaman M; Kim Y PLoS One; 2018; 13(2):e0193282. PubMed ID: 29466449 [TBL] [Abstract][Full Text] [Related]
92. Regulation of hemolymph trehalose level by an insulin-like peptide through diel feeding rhythm of the beet armyworm, Spodoptera exigua. Kim Y; Hong Y Peptides; 2015 Jun; 68():91-8. PubMed ID: 25703302 [TBL] [Abstract][Full Text] [Related]
93. New insights on the role of alkaline phosphatase 2 from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa. Yuan X; Zhao M; Wei J; Zhang W; Wang B; Myint Khaing M; Liang G J Insect Physiol; 2017 Apr; 98():101-107. PubMed ID: 28034678 [TBL] [Abstract][Full Text] [Related]
94. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. Giannoulis P; Brooks CL; Dunphy GB; Niven DF; Mandato CA J Invertebr Pathol; 2008 Mar; 97(3):211-22. PubMed ID: 18048054 [TBL] [Abstract][Full Text] [Related]
95. Characterization and functional study of a Cecropin-like peptide from the Chinese oak silkworm, Antheraea pernyi. Fang SL; Wang L; Fang Q; Chen C; Zhao XS; Qian C; Wei GQ; Zhu BJ; Liu CL Arch Insect Biochem Physiol; 2017 Jan; 94(1):. PubMed ID: 28008655 [TBL] [Abstract][Full Text] [Related]
96. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. Bisch G; Pagès S; McMullen JG; Stock SP; Duvic B; Givaudan A; Gaudriault S J Invertebr Pathol; 2015 Jan; 124():15-22. PubMed ID: 25315609 [TBL] [Abstract][Full Text] [Related]
97. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Seo S; Lee S; Hong Y; Kim Y Appl Environ Microbiol; 2012 Jun; 78(11):3816-23. PubMed ID: 22447611 [TBL] [Abstract][Full Text] [Related]
99. Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-hydroxytryptamine via Rac1 signal in Spodoptera exigua. Kim GS; Kim Y J Insect Physiol; 2010 Jun; 56(6):559-66. PubMed ID: 19961854 [TBL] [Abstract][Full Text] [Related]
100. PirAB protein from Xenorhabdus nematophila HB310 exhibits a binary toxin with insecticidal activity and cytotoxicity in Galleria mellonella. Yang Q; Zhang J; Li T; Liu S; Song P; Nangong Z; Wang Q J Invertebr Pathol; 2017 Sep; 148():43-50. PubMed ID: 28438456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]