These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 15183348)
1. Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation. Sluis-Cremer N; Arion D; Abram ME; Parniak MA Int J Biochem Cell Biol; 2004 Sep; 36(9):1836-47. PubMed ID: 15183348 [TBL] [Abstract][Full Text] [Related]
2. Glutamic residue 438 within the protease-sensitive subdomain of HIV-1 reverse transcriptase is critical for heterodimer processing in viral particles. Navarro JM; Damier L; Boretto J; Priet S; Canard B; Quérat G; Sire J Virology; 2001 Nov; 290(2):300-8. PubMed ID: 11883194 [TBL] [Abstract][Full Text] [Related]
3. Mutations that abrogate human immunodeficiency virus type 1 reverse transcriptase dimerization affect maturation of the reverse transcriptase heterodimer. Wapling J; Moore KL; Sonza S; Mak J; Tachedjian G J Virol; 2005 Aug; 79(16):10247-57. PubMed ID: 16051818 [TBL] [Abstract][Full Text] [Related]
4. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity. Goobar-Larsson L; Bäckbro K; Unge T; Bhikhabhai R; Vrang L; Zhang H; Orvell C; Strandberg B; Oberg B Virology; 1993 Oct; 196(2):731-8. PubMed ID: 7690504 [TBL] [Abstract][Full Text] [Related]
5. Efavirenz enhances the proteolytic processing of an HIV-1 pol polyprotein precursor and reverse transcriptase homodimer formation. Tachedjian G; Moore KL; Goff SP; Sluis-Cremer N FEBS Lett; 2005 Jan; 579(2):379-84. PubMed ID: 15642347 [TBL] [Abstract][Full Text] [Related]
6. The N137 and P140 amino acids in the p51 and the P95 amino acid in the p66 subunit of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase are instrumental to maintain catalytic activity and to design new classes of anti-HIV-1 drugs. Auwerx J; Van Nieuwenhove J; Rodríguez-Barrios F; de Castro S; Velázquez S; Ceccherini-Silberstein F; De Clercq E; Camarasa MJ; Perno CF; Gago F; Balzarini J FEBS Lett; 2005 Apr; 579(11):2294-300. PubMed ID: 15848161 [TBL] [Abstract][Full Text] [Related]
7. Virion instability of human immunodeficiency virus type 1 reverse transcriptase (RT) mutated in the protease cleavage site between RT p51 and the RT RNase H domain. Abram ME; Parniak MA J Virol; 2005 Sep; 79(18):11952-61. PubMed ID: 16140771 [TBL] [Abstract][Full Text] [Related]
8. The mutation T477A in HIV-1 reverse transcriptase (RT) restores normal proteolytic processing of RT in virus with Gag-Pol mutated in the p51-RNH cleavage site. Abram ME; Sarafianos SG; Parniak MA Retrovirology; 2010 Feb; 7():6. PubMed ID: 20122159 [TBL] [Abstract][Full Text] [Related]
10. Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase. Tachedjian G; Radzio J; Sluis-Cremer N Proteins; 2005 Jul; 60(1):5-13. PubMed ID: 15852304 [TBL] [Abstract][Full Text] [Related]
11. In vivo processing of Pr160gag-pol from human immunodeficiency virus type 1 (HIV) in acutely infected, cultured human T-lymphocytes. Lindhofer H; von der Helm K; Nitschko H Virology; 1995 Dec; 214(2):624-7. PubMed ID: 8553565 [TBL] [Abstract][Full Text] [Related]
12. Identification of amino acid residues in HIV-1 reverse transcriptase that are critical for the proteolytic processing of Gag-Pol precursors. Nishitsuji H; Yokoyama M; Sato H; Yamauchi S; Takaku H FEBS Lett; 2011 Nov; 585(21):3372-7. PubMed ID: 22004763 [TBL] [Abstract][Full Text] [Related]
13. The amino acid Asn136 in HIV-1 reverse transcriptase (RT) maintains efficient association of both RT subunits and enables the rational design of novel RT inhibitors. Balzarini J; Auwerx J; Rodríguez-Barrios F; Chedad A; Farkas V; Ceccherini-Silberstein F; García-Aparicio C; Velázquez S; De Clercq E; Perno CF; Camarasa MJ; Gago F Mol Pharmacol; 2005 Jul; 68(1):49-60. PubMed ID: 15833734 [TBL] [Abstract][Full Text] [Related]
14. Analysis of HIV type 1 reverse transcriptase expression in a human cell line. Ansari-Lari MA; Gibbs RA AIDS Res Hum Retroviruses; 1994 Sep; 10(9):1117-24. PubMed ID: 7530025 [TBL] [Abstract][Full Text] [Related]
15. Subunit-specific analysis of the human immunodeficiency virus type 1 reverse transcriptase in vivo. Mulky A; Sarafianos SG; Arnold E; Wu X; Kappes JC J Virol; 2004 Jul; 78(13):7089-96. PubMed ID: 15194785 [TBL] [Abstract][Full Text] [Related]
16. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Quillent C; Borman AM; Paulous S; Dauguet C; Clavel F Virology; 1996 May; 219(1):29-36. PubMed ID: 8623542 [TBL] [Abstract][Full Text] [Related]
17. The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer. Harris D; Lee R; Misra HS; Pandey PK; Pandey VN Biochemistry; 1998 Apr; 37(17):5903-8. PubMed ID: 9558323 [TBL] [Abstract][Full Text] [Related]
18. Spatial domain organization in the HIV-1 reverse transcriptase p66 homodimer precursor probed by double electron-electron resonance EPR. Schmidt T; Schwieters CD; Clore GM Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17809-17816. PubMed ID: 31383767 [TBL] [Abstract][Full Text] [Related]
19. p66/p51 and p51/p51 recombinant forms of reverse transcriptase from human immunodeficiency virus type 1--interactions with primer tRNA(Lys3), initiation of cDNA synthesis, and effect of inhibitors. Dufour E; El Dirani-Diab R; Boulmé F; Fournier M; Nevinsky G; Tarrago-Litvak L; Litvak S; Andreola ML Eur J Biochem; 1998 Jan; 251(1-2):487-95. PubMed ID: 9492322 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of HIV-1 reverse transcriptase having a 1:1 ratio of p66 and p51 subunits. Stahlhut M; Li Y; Condra JH; Fu J; Gotlib L; Graham DJ; Olsen DB Protein Expr Purif; 1994 Dec; 5(6):614-21. PubMed ID: 7532052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]