BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15183605)

  • 1. Comparison of metal concentrations in rat tibia tissues with various metallic implants.
    Okazaki Y; Gotoh E; Manabe T; Kobayashi K
    Biomaterials; 2004 Dec; 25(28):5913-20. PubMed ID: 15183605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia.
    Okazak Y; Nishimura E; Nakada H; Kobayashi K
    Biomaterials; 2001 Mar; 22(6):599-607. PubMed ID: 11219725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial kinetics of titanium- and cobalt-based implant alloys in human serum: metal release and biofilm formation.
    Hallab NJ; Skipor A; Jacobs JJ
    J Biomed Mater Res A; 2003 Jun; 65(3):311-8. PubMed ID: 12746877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Katsuda SI
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants.
    Okazaki Y; Nagata H
    Sci Technol Adv Mater; 2012 Dec; 13(6):064216. PubMed ID: 27877543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic levels of metallic ions released from orthodontic mini-implants.
    de Morais LS; Serra GG; Albuquerque Palermo EF; Andrade LR; Müller CA; Meyers MA; Elias CN
    Am J Orthod Dentofacial Orthop; 2009 Apr; 135(4):522-9. PubMed ID: 19361740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sublethal metal ion concentrations on osteogenic cells derived from bone marrow stromal cells.
    Thompson GJ; Puleo DA
    J Appl Biomater; 1995; 6(4):249-58. PubMed ID: 8589510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Oxide Film of Implantable Metals by Electrochemical Impedance Spectroscopy.
    Okazaki Y
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31652695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.
    Krischak GD; Gebhard F; Mohr W; Krivan V; Ignatius A; Beck A; Wachter NJ; Reuter P; Arand M; Kinzl L; Claes LE
    Arch Orthop Trauma Surg; 2004 Mar; 124(2):104-13. PubMed ID: 14727127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of friction on anodic polarization properties of metallic biomaterials.
    Okazaki Y
    Biomaterials; 2002 May; 23(9):2071-7. PubMed ID: 11996049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of soluble metals on human peri-implant cells.
    Hallab NJ; Anderson S; Caicedo M; Brasher A; Mikecz K; Jacobs JJ
    J Biomed Mater Res A; 2005 Jul; 74(1):124-40. PubMed ID: 15937919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release.
    Morais LS; Serra GG; Muller CA; Andrade LR; Palermo EF; Elias CN; Meyers M
    Acta Biomater; 2007 May; 3(3):331-9. PubMed ID: 17257912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of spatial design and thermal oxidation on apatite formation on Ti-15Zr-4Ta-4Nb alloy.
    Sugino A; Ohtsuki C; Tsuru K; Hayakawa S; Nakano T; Okazaki Y; Osaka A
    Acta Biomater; 2009 Jan; 5(1):298-304. PubMed ID: 18706879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications.
    Elias KL; Daehn GS; Brantley WA; McGlumphy EA
    J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grindability of cast Ti-6Al-4V alloyed with copper.
    Watanabe I; Aoki T; Okabe T
    J Prosthodont; 2009 Feb; 18(2):152-5. PubMed ID: 19141053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical surface modification of Ti-6Al-4V for the delivery of protein to the cell-biomaterial interface.
    Wojcik SM; Puleo DA
    Biomed Sci Instrum; 1997; 33():166-71. PubMed ID: 9731354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvascular response of striated muscle to common arthroplasty-alloys: A comparative in vivo study with CoCrMo, Ti-6Al-4V, and Ti-6Al-7Nb.
    Kraft CN; Burian B; Diedrich O; Gessmann J; Wimmer MA; Pennekamp PH
    J Biomed Mater Res A; 2005 Oct; 75(1):31-40. PubMed ID: 16078208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.