BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15184057)

  • 41. Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells.
    Tivodar S; Paladino S; Pillich R; Prinetti A; Chigorno V; van Meer G; Sonnino S; Zurzolo C
    FEBS Lett; 2006 Oct; 580(24):5705-12. PubMed ID: 17007841
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detergent-resistant membranes should not be identified with membrane rafts.
    Lichtenberg D; Goñi FM; Heerklotz H
    Trends Biochem Sci; 2005 Aug; 30(8):430-6. PubMed ID: 15996869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detergent-resistant membranes are platforms for actinoporin pore-forming activity on intact cells.
    Alegre-Cebollada J; Rodríguez-Crespo I; Gavilanes JG; del Pozo AM
    FEBS J; 2006 Feb; 273(4):863-71. PubMed ID: 16441671
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Saccharomyces cerevisiae Na+/H+ antiporter Nha1p associates with lipid rafts and requires sphingolipid for stable localization to the plasma membrane.
    Mitsui K; Hatakeyama K; Matsushita M; Kanazawa H
    J Biochem; 2009 Jun; 145(6):709-20. PubMed ID: 19254924
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature.
    Gil C; Cubí R; Blasi J; Aguilera J
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1334-42. PubMed ID: 16920068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes.
    Mazzone A; Tietz P; Jefferson J; Pagano R; LaRusso NF
    Hepatology; 2006 Feb; 43(2):287-96. PubMed ID: 16440338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteomic analysis of detergent-resistant membranes from Candida albicans.
    Insenser M; Nombela C; Molero G; Gil C
    Proteomics; 2006 Apr; 6 Suppl 1():S74-81. PubMed ID: 16534748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-activated T and B lymphocytes become morphologically distinguishable after detergent treatment.
    Kono M; Takagi Y; Kawauchi S; Wada A; Morikawa T; Funakoshi K
    Cytometry A; 2013 Apr; 83(4):396-402. PubMed ID: 23401265
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Moving closer to the lipid raft proteome using quantitative proteomics.
    Foster LJ
    Methods Mol Biol; 2009; 528():189-99. PubMed ID: 19153694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation and characterization of unmyelinated axolemma from bovine splenic nerve.
    DeVries GH; Campbell B; Saunders R
    J Neurosci Res; 1999 Sep; 57(5):670-9. PubMed ID: 10462691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical characterization of membrane-associated septin from rat brain.
    Maimaitiyiming M; Kumanogoh H; Nakamura S; Nagata K; Suzaki T; Maekawa S
    J Neurochem; 2008 Aug; 106(3):1175-83. PubMed ID: 18466330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells.
    Dalskov SM; Immerdal L; Niels-Christiansen LL; Hansen GH; Schousboe A; Danielsen EM
    Neurochem Int; 2005 May; 46(6):489-99. PubMed ID: 15769551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic labeling and membrane fractionation for comparative proteomic analysis of Arabidopsis thaliana suspension cell cultures.
    Szymanski WG; Kierszniowska S; Schulze WX
    J Vis Exp; 2013 Sep; (79):e50535. PubMed ID: 24121251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosis.
    DeBruin LS; Haines JD; Bienzle D; Harauz G
    Biochem Cell Biol; 2006 Dec; 84(6):993-1005. PubMed ID: 17215885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of trypanosomal endocytic organelles using preparative free-flow electrophoresis.
    Grab DJ; Webster P; Lonsdale-Eccles JD
    Electrophoresis; 1998 Jun; 19(7):1162-70. PubMed ID: 9662179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of Functionalized Sphingolipid Analogs in Detergent-Resistant Membranes of Immune Cells.
    Fink J; Seibel J; Avota E
    Methods Mol Biol; 2021; 2187():313-325. PubMed ID: 32770515
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Semi-dry PhastTransfer detection of biotinylated cell surface molecules.
    Abdi K; Li X; Mentzer SJ
    Electrophoresis; 1993; 14(1-2):73-7. PubMed ID: 8462519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the proteins associated with platelet detergent resistant membranes.
    Szklanna PB; Foy M; Wynne K; Byrne D; Maguire PB
    Proteomics; 2016 Sep; 16(17):2345-50. PubMed ID: 27329341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation of intestinal cell peroxisomes by rate-dependent banding in a vertical rotor.
    Gianello R; Nayudu R
    Biochem Mol Biol Int; 1993 Jul; 30(3):505-15. PubMed ID: 8401309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Separation of mouse bone marrow cells by preparative electrophoresis].
    Kotel'nikov VM; Reshchikov VP; Fertukova NM; Gurevich OA; Rudneva NA
    Biull Eksp Biol Med; 1982 May; 93(5):102-4. PubMed ID: 7093495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.