BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 15184514)

  • 1. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
    Ivanenko YP; Dominici N; Cappellini G; Dan B; Cheron G; Lacquaniti F
    J Exp Biol; 2004 Oct; 207(Pt 21):3797-810. PubMed ID: 15371487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stride frequency on mechanical power and energy expenditure of walking.
    Minetti AE; Capelli C; Zamparo P; di Prampero PE; Saibene F
    Med Sci Sports Exerc; 1995 Aug; 27(8):1194-202. PubMed ID: 7476065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical external work and recovery at preferred walking speed in obese subjects.
    Malatesta D; Vismara L; Menegoni F; Galli M; Romei M; Capodaglio P
    Med Sci Sports Exerc; 2009 Feb; 41(2):426-34. PubMed ID: 19127181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the body centre of mass during actual acceleration across transition speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?
    Griffin TM; Main RP; Farley CT
    J Exp Biol; 2004 Sep; 207(Pt 20):3545-58. PubMed ID: 15339951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why not walk faster?
    Usherwood JR
    Biol Lett; 2005 Sep; 1(3):338-41. PubMed ID: 17148201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual limb work does not explain the greater metabolic cost of walking in elderly adults.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2007 Jun; 102(6):2266-73. PubMed ID: 17363623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed.
    Sasaki K; Neptune RR
    Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic cost, mechanical work, and efficiency during walking in young and older men.
    Mian OS; Thom JM; Ardigò LP; Narici MV; Minetti AE
    Acta Physiol (Oxf); 2006 Feb; 186(2):127-39. PubMed ID: 16497190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centre of mass movement and mechanical energy fluctuation during gallop locomotion in the Thoroughbred racehorse.
    Pfau T; Witte TH; Wilson AM
    J Exp Biol; 2006 Oct; 209(Pt 19):3742-57. PubMed ID: 16985191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous centre of mass energy fluctuations during treadmill walking in healthy individuals.
    Collett J; Dawes H; Howells K; Elsworth C; Izadi H; Sackley C
    Gait Posture; 2007 Sep; 26(3):400-6. PubMed ID: 17116395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait.
    Detrembleur C; Vanmarsenille JM; De Cuyper F; Dierick F
    Gait Posture; 2005 Apr; 21(3):333-40. PubMed ID: 15760750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait.
    Caldwell GE; Forrester LW
    Med Sci Sports Exerc; 1992 Dec; 24(12):1396-412. PubMed ID: 1470024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant.
    Neptune RR; Zajac FE; Kautz SA
    J Biomech; 2004 Jun; 37(6):817-25. PubMed ID: 15111069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanisms for minimizing energy expenditure in human locomotion.
    Saibene F
    Eur J Clin Nutr; 1990; 44 Suppl 1():65-71. PubMed ID: 2193805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.