These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15184572)

  • 1. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source.
    Denger K; Ruff J; Schleheck D; Cook AM
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1859-1867. PubMed ID: 15184572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1.
    Denger K; Smits THM; Cook AM
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3197-3206. PubMed ID: 17074891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans.
    Brüggemann C; Denger K; Cook AM; Ruff J
    Microbiology (Reading); 2004 Apr; 150(Pt 4):805-816. PubMed ID: 15073291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase.
    Krejcík Z; Denger K; Weinitschke S; Hollemeyer K; Paces V; Cook AM; Smits TH
    Arch Microbiol; 2008 Aug; 190(2):159-68. PubMed ID: 18506422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine.
    Weinitschke S; Denger K; Smits THM; Hollemeyer K; Cook AM
    Microbiology (Reading); 2006 Apr; 152(Pt 4):1179-1186. PubMed ID: 16549680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.
    Ruff J; Denger K; Cook AM
    Biochem J; 2003 Jan; 369(Pt 2):275-85. PubMed ID: 12358600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164.
    Krejčík Z; Schleheck D; Hollemeyer K; Cook AM
    Arch Microbiol; 2012 Oct; 194(10):857-63. PubMed ID: 22588221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase.
    Denger K; Mayer J; Buhmann M; Weinitschke S; Smits TH; Cook AM
    J Bacteriol; 2009 Sep; 191(18):5648-56. PubMed ID: 19581363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pathway for Isethionate Dissimilation in Bacillus krulwichiae.
    Tong Y; Wei Y; Hu Y; Ang EL; Zhao H; Zhang Y
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of taurine in microorganisms: a primer in molecular biodiversity?
    Cook AM; Denger K
    Adv Exp Med Biol; 2006; 583():3-13. PubMed ID: 17153584
    [No Abstract]   [Full Text] [Related]  

  • 11. Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source.
    Masepohl B; Führer F; Klipp W
    FEMS Microbiol Lett; 2001 Nov; 205(1):105-11. PubMed ID: 11728723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source.
    van der Ploeg JR; Weiss MA; Saller E; Nashimoto H; Saito N; Kertesz MA; Leisinger T
    J Bacteriol; 1996 Sep; 178(18):5438-46. PubMed ID: 8808933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth.
    Felux AK; Denger K; Weiss M; Cook AM; Schleheck D
    J Bacteriol; 2013 Jun; 195(12):2921-30. PubMed ID: 23603744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen.
    Weinitschke S; von Rekowski KS; Denger K; Cook AM
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1285-1290. PubMed ID: 15817795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates.
    Weinitschke S; Denger K; Cook AM; Smits THM
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3055-3060. PubMed ID: 17768248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of o-xylene oxygenase genes from Rhodococcus opacus TKN14.
    Maruyama T; Ishikura M; Taki H; Shindo K; Kasai H; Haga M; Inomata Y; Misawa N
    Appl Environ Microbiol; 2005 Dec; 71(12):7705-15. PubMed ID: 16332743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear alkanesulfonates as carbon and energy sources for gram-positive and gram-negative bacteria.
    Reichenbecher W; Murrell JC
    Arch Microbiol; 1999; 171(6):430-8. PubMed ID: 10369899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase.
    Krejčík Z; Hollemeyer K; Smits THM; Cook AM
    Microbiology (Reading); 2010 May; 156(Pt 5):1547-1555. PubMed ID: 20133363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1.
    Styp von Rekowski K; Denger K; Cook AM
    Arch Microbiol; 2005 Aug; 183(5):325-30. PubMed ID: 15883781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.